Generalized geometry of two-dimensional vacua

  • Dario Rosa
Open Access


We derive the conditions for unbroken supersymmetry for a Mink2, (2, 0) vacuum, arising from Type II supergravity on a compact eight-dimensional manifold ℳ8. When specialized to internal manifolds enjoying SU(4) × SU(4) structure the resulting system is elegantly rewritten in terms of generalized complex geometry. This particular class of vacua violates the correspondence between supersymmetry conditions and calibrations conditions of D branes (supersymmetry-calibrations correspondence). Our analysis includes and extends previous results about the failure of the supersymmetry-calibrations correspondence, and confirms the existence of a precise relation between such a failure and a subset of the supersymmetry conditions.


Superstring Vacua Differential and Algebraic Geometry 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281 [math/0209099] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    M. Gualtieri, Generalized complex geometry, math/0401221 [INSPIRE].
  3. [3]
    M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Generalized structures of N = 1 vacua, JHEP 11 (2005) 020 [hep-th/0505212] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    L. Martucci and P. Smyth, Supersymmetric D-branes and calibrations on general N = 1 backgrounds, JHEP 11 (2005) 048 [hep-th/0507099] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    P. Koerber and L. Martucci, D-branes on AdS flux compactifications, JHEP 01 (2008) 047 [arXiv:0710.5530] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    D. Lüst, P. Patalong and D. Tsimpis, Generalized geometry, calibrations and supersymmetry in diverse dimensions, JHEP 01 (2011) 063 [arXiv:1010.5789] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    D. Prins and D. Tsimpis, IIB supergravity on manifolds with SU(4) structure and generalized geometry, JHEP 07 (2013) 180 [arXiv:1306.2543] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    A. Tomasiello, Reformulating supersymmetry with a generalized Dolbeault operator, JHEP 02 (2008) 010 [arXiv:0704.2613] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    A. Tomasiello, Generalized structures of ten-dimensional supersymmetric solutions, JHEP 03 (2012) 073 [arXiv:1109.2603] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    L. Martucci, Electrified branes, JHEP 02 (2012) 097 [arXiv:1110.0627] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    R.L. Bryant, Pseudo-Riemannian metrics with parallel spinor fields and vanishing Ricci tensor, math/0004073.
  12. [12]
    E.J. Hackett-Jones and D.J. Smith, Type IIB Killing spinors and calibrations, JHEP 11 (2004) 029 [hep-th/0405098] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    J.M. Figueroa-O’Farrill, E. Hackett-Jones and G. Moutsopoulos, The Killing superalgebra of ten-dimensional supergravity backgrounds, Class. Quant. Grav. 24 (2007) 3291 [hep-th/0703192] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  14. [14]
    D. Lüst and D. Tsimpis, Supersymmetric AdS 4 compactifications of IIA supergravity, JHEP 02 (2005) 027 [hep-th/0412250] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS 5 solutions of type IIB supergravity, Class. Quant. Grav. 23 (2006) 4693 [hep-th/0510125] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    M. Haack, D. Lüst, L. Martucci and A. Tomasiello, Domain walls from ten dimensions, JHEP 10 (2009) 089 [arXiv:0905.1582] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    P. Smyth and S. Vaula, Domain wall flow equations and SU(3) × SU(3) structure compactifications, Nucl. Phys. B 828 (2010) 102 [arXiv:0905.1334] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    S. Giusto, L. Martucci, M. Petrini and R. Russo, 6D microstate geometries from 10D structures, Nucl. Phys. B 876 (2013) 509 [arXiv:1306.1745] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    D. Rosa and A. Tomasiello, Pure spinor equations to lift gauged supergravity, JHEP 01 (2014) 176 [arXiv:1305.5255] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  20. [20]
    B. de Wit, D.J. Smit and N.D. Hari Dass, Residual Supersymmetry of Compactified D = 10 Supergravity, Nucl. Phys. B 283 (1987) 165 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    P. Koerber and D. Tsimpis, Supersymmetric sources, integrability and generalized-structure compactifications, JHEP 08 (2007) 082 [arXiv:0706.1244] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    U. Gran, J. Gutowski and G. Papadopoulos, IIB horizons, Class. Quant. Grav. 30 (2013) 205004 [arXiv:1304.6539] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    H.K. Kunduri and J. Lucietti, Classification of near-horizon geometries of extremal black holes, Living Rev. Rel. 16 (2013) 8 [arXiv:1306.2517] [INSPIRE].Google Scholar
  25. [25]
    M. Gabella, J.P. Gauntlett, E. Palti, J. Sparks and D. Waldram, AdS 5 Solutions of Type IIB Supergravity and Generalized Complex Geometry, Commun. Math. Phys. 299 (2010) 365 [arXiv:0906.4109] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  26. [26]
    F. Apruzzi, M. Fazzi, D. Rosa and A. Tomasiello, All AdS 7 solutions of type-II supergravity, JHEP 04 (2014) 064 [arXiv:1309.2949] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J.P. Gauntlett and O.A.P. Mac Conamhna, AdS spacetimes from wrapped D3-branes, Class. Quant. Grav. 24 (2007) 6267 [arXiv:0707.3105] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  28. [28]
    P. Figueras, O.A.P. Mac Conamhna and E. O Colgain, Global geometry of the supersymmetric AdS 3/CFT 2 correspondence in M-theory, Phys. Rev. D 76 (2007) 046007 [hep-th/0703275] [INSPIRE].ADSGoogle Scholar
  29. [29]
    N. Kim, AdS 3 solutions of IIB supergravity from D3-branes, JHEP 01 (2006) 094 [hep-th/0511029] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J.P. Gauntlett, N. Kim and D. Waldram, Supersymmetric AdS 3 , AdS 2 and Bubble Solutions, JHEP 04 (2007) 005 [hep-th/0612253] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    A. Donos, J.P. Gauntlett and N. Kim, AdS Solutions Through Transgression, JHEP 09 (2008) 021 [arXiv:0807.4375] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità di Milano-BicoccaMilanoItaly
  2. 2.INFN, sezione di Milano-BicoccaMilanoItaly

Personalised recommendations