Advertisement

Mass renormalization in string theory: special states

  • Roji Pius
  • Arnab Rudra
  • Ashoke Sen
Open Access
Article

Abstract

String theory gives a well defined procedure for computing the S-matrix of BPS or a class of massless states, but similar calculation for general massive states is plagued with difficulties due to mass renormalization effect. In this paper we describe a procedure for computing the renormalized masses and S-matrix elements in bosonic string theory for a special class of massive states which do not mix with unphysical states under renormalization. Even though this requires working with off-shell amplitudes which are ambiguous, we show that the renormalized masses and S-matrix elements are free from these ambiguities. We also argue that the masses and S-matrix elements for general external states can be found by examining the locations of the poles and the residues of the S-matrix of special states. Finally we discuss generalizations to heterotic and superstring theories.

Keywords

Superstrings and Heterotic Strings Bosonic Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Witten, Superstring perturbation theory revisited, arXiv:1209.5461 [INSPIRE].
  2. [2]
    A. Belopolsky, De Rham cohomology of the supermanifolds and superstring BRST cohomology, Phys. Lett. B 403 (1997) 47 [hep-th/9609220] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    A. Belopolsky, New geometrical approach to superstrings, hep-th/9703183 [INSPIRE].
  4. [4]
    A. Belopolsky, Picture changing operators in supergeometry and superstring theory, hep-th/9706033 [INSPIRE].
  5. [5]
    E. D’Hoker and D.H. Phong, Two loop superstrings. 1. Main formulas, Phys. Lett. B 529 (2002) 241 [hep-th/0110247] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    E. D’Hoker and D.H. Phong, Two loop superstrings. 2. The chiral measure on moduli space, Nucl. Phys. B 636 (2002) 3 [hep-th/0110283] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    E. D’Hoker and D.H. Phong, Two loop superstrings. 3. Slice independence and absence of ambiguities, Nucl. Phys. B 636 (2002) 61 [hep-th/0111016] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    E. D’Hoker and D.H. Phong, Two loop superstrings 4: The cosmological constant and modular forms, Nucl. Phys. B 639 (2002) 129 [hep-th/0111040] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    E. D’Hoker and D.H. Phong, Two-loop superstrings. V. Gauge slice independence of the N-point function, Nucl. Phys. B 715 (2005) 91 [hep-th/0501196] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    E. D’Hoker and D.H. Phong, Two-loop superstrings VI: Non-renormalization theorems and the 4-point function, Nucl. Phys. B 715 (2005) 3 [hep-th/0501197] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    E. D’Hoker and D.H. Phong, Two-loop superstrings. VII. Cohomology of chiral amplitudes, Nucl. Phys. B 804 (2008) 421 [arXiv:0711.4314] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    E. Witten, Notes on supermanifolds and integration, arXiv:1209.2199 [INSPIRE].
  13. [13]
    E. Witten, Notes on super riemann surfaces and their moduli, arXiv:1209.2459 [INSPIRE].
  14. [14]
    E. Witten, More on superstring perturbation theory, arXiv:1304.2832 [INSPIRE].
  15. [15]
    E. Witten, Notes on holomorphic string and superstring theory measures of low genus, arXiv:1306.3621 [INSPIRE].
  16. [16]
    E. Witten, The feynman iϵ in string theory, arXiv:1307.5124 [INSPIRE].
  17. [17]
    R. Donagi and E. Witten, Supermoduli space is not projected, arXiv:1304.7798 [INSPIRE].
  18. [18]
    S. Weinberg, Radiative corrections in string theory, in The Oregon Meeting, Proceedings of the Annual Meeting of the Division of Particles and Fields of the APS, Eugene, Oregon, 1985, R.C. Hwa ed., World Scientific, Singapore (1986).Google Scholar
  19. [19]
    N. Seiberg, Anomalous dimensions and mass renormalization in string theory, Phys. Lett. B 187 (1987) 56 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    H. Ooguri and N. Sakai, String loop corrections from fusion of handles and vertex operators, Phys. Lett. B 197 (1987) 109 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    H. Yamamoto, One loop mass shifts in O(32) open superstring theory, Prog. Theor. Phys. 79 (1988) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Sen, Mass renormalization and BRST anomaly in string theories, Nucl. Phys. B 304 (1988) 403 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S.R. Das, Renormalizing handles and holes in string theory, Phys. Rev. D 38 (1988) 3105 [INSPIRE].ADSGoogle Scholar
  24. [24]
    S.-J. Rey, Unified view of BRST anomaly and its cancellation in string amplitudes, Nucl. Phys. B 316 (1989) 197 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    B. Sundborg, Selfenergies of massive strings, Nucl. Phys. B 319 (1989) 415 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    N. Marcus, Unitarity and regularized divergences in string amplitudes, Phys. Lett. B 219 (1989) 265 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    K. Amano and A. Tsuchiya, Mass splittings and the finiteness problem of mass shifts in the type II superstring at one loop, Phys. Rev. D 39 (1989) 565 [INSPIRE].ADSGoogle Scholar
  28. [28]
    C.J.H. Lee, BRST anomalies and mass renormalization with anomalous U(1) gauge symmetries in string theory, UMI-92-24830 (1992) [INSPIRE].
  29. [29]
    A. Berera, The mass renormalization of string theory, Phys. Rev. D 49 (1994) 6674 [INSPIRE].ADSMathSciNetGoogle Scholar
  30. [30]
    L. Del Debbio, E. Kerrane and R. Russo, Mass corrections in string theory and lattice field theory, Phys. Rev. D 80 (2009) 025003 [arXiv:0812.3129] [INSPIRE].ADSGoogle Scholar
  31. [31]
    D. Chialva, String mass shifts, Nucl. Phys. B 819 (2009) 225 [arXiv:0903.3979] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    P.C. Nelson, Covariant insertion of general vertex operators, Phys. Rev. Lett. 62 (1989) 993 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    A.G. Cohen, G.W. Moore, P.C. Nelson and J. Polchinski, An off-shell propagator for string theory, Nucl. Phys. B 267 (1986) 143 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  34. [34]
    A.G. Cohen, G.W. Moore, P.C. Nelson and J. Polchinski, Semi off-shell string amplitudes, Nucl. Phys. B 281 (1987) 127 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    L. Álvarez-Gaumé, C. Gomez, G.W. Moore and C. Vafa, Strings in the operator formalism, Nucl. Phys. B 303 (1988) 455 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    L. Álvarez-Gaumé, C. Gomez, P.C. Nelson, G. Sierra and C. Vafa, Fermionic strings in the operator formalism, Nucl. Phys. B 311 (1988) 333 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    B. Zwiebach, Closed string field theory: quantum action and the B-V master equation, Nucl. Phys. B 390 (1993) 33 [hep-th/9206084] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    N. Berkovits, Y. Okawa and B. Zwiebach, WZW-like action for heterotic string field theory, JHEP 11 (2004) 038 [hep-th/0409018] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    P. Di Vecchia et al., N point g loop vertex for a free bosonic theory with vacuum charge Q, Nucl. Phys. B 322 (1989) 317 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J. Polchinski, Factorization of bosonic string amplitudes, Nucl. Phys. B 307 (1988) 61 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    H. Hata and B. Zwiebach, Developing the covariant Batalin-Vilkovisky approach to string theory, Annals Phys. 229 (1994) 177 [hep-th/9301097] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  42. [42]
    A. LeClair, M.E. Peskin and C.R. Preitschopf, String field theory on the conformal plane. 1. Kinematical principles, Nucl. Phys. B 317 (1989) 411 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  43. [43]
    A. LeClair, M.E. Peskin and C.R. Preitschopf, String field theory on the conformal plane. 2. Generalized gluing, Nucl. Phys. B 317 (1989) 464 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Harish-Chandra Research InstituteJhusiIndia
  2. 2.Department of Applied Mathematics and Theoretical PhysicsCambridgeU.K.

Personalised recommendations