Distributed SUSY breaking: dark energy, Newton’s law and the LHC

  • C. P. Burgess
  • L. van Nierop
  • M. Williams
Open Access


We identify the underlying symmetry mechanism that suppresses the low-energy effective 4D cosmological constant within some 6D supergravity models, generically leading to results suppressed by powers of the KK scale, m K K 2 , relative to the much larger size, m 4, associated with mass-m particles localized in these models on codimension-2 branes. These models are examples for which the local conditions for unbroken supersymmetry can be satisfied locally everywhere within the extra dimensions, but are obstructed only by global conditions like flux quantization or by the mutual inconsistency of the boundary conditions required at the various branes. Consequently quantities (like vacuum energies) forbidden by supersymmetry cannot become nonzero until wavelengths of order the KK scale are integrated out, since only such long wavelength modes can see the entire space and so ‘know’ that supersymmetry has broken. We verify these arguments by extending earlier rugby-ball calculations of one-loop vacuum energies within these models to more general pairs of branes within two warped extra dimensions. For the Standard Model confined to one of two otherwise identical branes, the predicted effective 4D vacuum energy density is of order ρ vacC(mM g /4πM p )4 = C(5.6 × 10−5 eV)4, where M g ≳ 10 TeV (corresponding to extra-dimensional size r ≲ 1 μm) and M p = 2.44 × 1018 GeV are the 6D and 4D rationalized Planck scales, and m is the heaviest brane-localized particle. (For numerical purposes we take m to be the top-quark mass and take M g as small as possible, consistent with energy-loss bounds from supernovae.) C is a constant depending on the details of the bulk spectrum, which could easily be of order 500 for each of hundreds of fields in the bulk. The value C ∼ 6 × 106 would give the observed Dark Energy density.


Strings and branes phenomenology Phenomenology of Large extra dimensions 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, in Cargese Summer Inst. (1979) 135 (QCD161:S77:1979) reprinted in Under the spell of the gauge principle, Adv. Ser. Math. Phys. 19 (1994) 1, and in Dynamical gauge symmetry breaking, E. Farhi and R. Jackiw eds., World Scientific (1982) 345-367.Google Scholar
  2. [2]
    C.P. Burgess, The Cosmological Constant Problem: Why its hard to get Dark Energy from Micro-physics, in the proceedings of the Les Houches School Cosmology After Planck [arXiv:1309.4133] [INSPIRE].
  3. [3]
    M. Williams, C.P. Burgess, L. van Nierop and A. Salvio, Running with Rugby Balls: Bulk Renormalization of Codimension-2 Branes, JHEP 01 (2013) 102 [arXiv:1210.3753] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    C.P. Burgess, L. van Nierop, S. Parameswaran, A. Salvio and M. Williams, Accidental SUSY: Enhanced Bulk Supersymmetry from Brane Back-reaction, JHEP 02 (2013) 120 [arXiv:1210.5405] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Williams, Technically Natural Vacuum Energy at the Tip of a Supersymmetric Teardrop, Phys. Rev. D 89 (2014) 086006 [arXiv:1311.4172] [INSPIRE].ADSGoogle Scholar
  6. [6]
    Y. Aghababaie, C.P. Burgess, S.L. Parameswaran and F. Quevedo, Towards a naturally small cosmological constant from branes in 6 − D supergravity, Nucl. Phys. B 680 (2004) 389 [hep-th/0304256] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    C.P. Burgess, Supersymmetric large extra dimensions and the cosmological constant: An Update, Annals Phys. 313 (2004) 283 [hep-th/0402200] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  8. [8]
    C.P. Burgess, Towards a natural theory of dark energy: Supersymmetric large extra dimensions, AIP Conf. Proc. 743 (2005) 417 [hep-th/0411140] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    C.P. Burgess and L. van Nierop, Technically Natural Cosmological Constant From Supersymmetric 6D Brane Backreaction, Phys. Dark Univ. 2 (2013) 1 [arXiv:1108.0345] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    C.P. Burgess, R. Diener, L. van Nierop and M. Williams, in preparation.Google Scholar
  11. [11]
    P. Callin and C.P. Burgess, Deviations from Newtons law in supersymmetric large extra dimensions, Nucl. Phys. B 752 (2006) 60 [hep-ph/0511216] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    J.-W. Chen, M.A. Luty and E. Ponton, A Critical cosmological constant from millimeter extra dimensions, JHEP 09 (2000) 012 [hep-th/0003067] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    F. Leblond, R.C. Myers and D.J. Winters, Consistency conditions for brane worlds in arbitrary dimensions, JHEP 07 (2001) 031 [hep-th/0106140] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    S.M. Carroll and M.M. Guica, Sidestepping the cosmological constant with football shaped extra dimensions, hep-th/0302067 [INSPIRE].
  15. [15]
    I. Navarro, Codimension two compactifications and the cosmological constant problem, JCAP 09 (2003) 004 [hep-th/0302129] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    E. Papantonopoulos and A. Papazoglou, Brane-bulk matter relations for a purely conical codimension-2 brane world, JCAP 07 (2005) 004 [hep-th/0501112] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    C.P. Burgess and L. van Nierop, Bulk Axions, Brane Back-reaction and Fluxes, JHEP 02 (2011) 094 [arXiv:1012.2638] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    C.P. Burgess and L. van Nierop, Large Dimensions and Small Curvatures from Supersymmetric Brane Back-reaction, JHEP 04 (2011) 078 [arXiv:1101.0152] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    Y. Aghababaie, C.P. Burgess, J.M. Cline, H. Firouzjahi, S.L. Parameswaran et al., Warped brane worlds in six-dimensional supergravity, JHEP 09 (2003) 037 [hep-th/0308064] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    H. Nishino and E. Sezgin, Matter and Gauge Couplings of N = 2 Supergravity in Six-Dimensions, Phys. Lett. B 144 (1984) 187 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    H. Nishino and E. Sezgin, The Complete N = 2, d = 6 Supergravity With Matter and Yang-Mills Couplings, Nucl. Phys. B 278 (1986) 353 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    S. Randjbar-Daemi, A. Salam, E. Sezgin and J.A. Strathdee, An Anomaly Free Model in Six-Dimensions, Phys. Lett. B 151 (1985) 351 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    A. Salam and E. Sezgin, Chiral Compactification on Minkowski x S 2 of N = 2 Einstein-Maxwell Supergravity in Six-Dimensions, Phys. Lett. B 147 (1984) 47 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    Y. Aghababaie, C.P. Burgess, S.L. Parameswaran and F. Quevedo, SUSY breaking and moduli stabilization from fluxes in gauged 6 − D supergravity, JHEP 03 (2003) 032 [hep-th/0212091] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    C.P. Burgess, D. Hoover, C. de Rham and G. Tasinato, Effective Field Theories and Matching for Codimension-2 Branes, JHEP 03 (2009) 124 [arXiv:0812.3820] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Bayntun, C.P. Burgess and L. van Nierop, Codimension-2 Brane-Bulk Matching: Examples from Six and Ten Dimensions, New J. Phys. 12 (2010) 075015 [arXiv:0912.3039] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    D.V. Volkov and V.P. Akulov, Is the Neutrino a Goldstone Particle?, Phys. Lett. B 46 (1973) 109 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    V.P. Akulov and D.V. Volkov, Goldstone fields with spin 1/2, Theor. Math. Phys. 18 (1974) 28 [INSPIRE].CrossRefMathSciNetGoogle Scholar
  29. [29]
    B. Zumino, Nonlinear Realization of Supersymmetry in de Sitter Space, Nucl. Phys. B 127 (1977) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Samuel and J. Wess, A Superfield Formulation of the Nonlinear Realization of Supersymmetry and Its Coupling to Supergravity, Nucl. Phys. B 221 (1983) 153 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton Univ. Pr. (1992) 259 pp.Google Scholar
  32. [32]
    Z. Komargodski and N. Seiberg, From Linear SUSY to Constrained Superfields, JHEP 09 (2009) 066 [arXiv:0907.2441] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    E. Cremmer, B. Julia, J. Scherk, P. van Nieuwenhuizen, S. Ferrara et al., SuperHiggs Effect in Supergravity with General Scalar Interactions, Phys. Lett. B 79 (1978) 231 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello et al., Spontaneous Symmetry Breaking and Higgs Effect in Supergravity Without Cosmological Constant, Nucl. Phys. B 147 (1979) 105 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Yang-Mills Theories with Local Supersymmetry: Lagrangian, Transformation Laws and SuperHiggs Effect, Nucl. Phys. B 212 (1983) 413 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M.T. Grisaru, M. Roček and A. Karlhede, The Superhiggs Effect in Superspace, Phys. Lett. B 120 (1983) 110 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    C.P. Burgess, J. Matias and F. Quevedo, MSLED: A Minimal supersymmetric large extra dimensions scenario, Nucl. Phys. B 706 (2005) 71 [hep-ph/0404135] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Dual models of gauge unification in various dimensions, Nucl. Phys. B 712 (2005) 139 [hep-ph/0412318] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric standard model from the heterotic string, Phys. Rev. Lett. 96 (2006) 121602 [hep-ph/0511035] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  40. [40]
    W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Local grand unification, hep-ph/0512326 [INSPIRE].
  41. [41]
    W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric Standard Model from the Heterotic String (II), Nucl. Phys. B 785 (2007) 149 [hep-th/0606187] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    C.P. Burgess, R.C. Myers and F. Quevedo, A Naturally small cosmological constant on the brane?, Phys. Lett. B 495 (2000) 384 [hep-th/9911164] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    C.P. Burgess, P. Grenier and D. Hoover, Quintessentially flat scalar potentials, JCAP 03 (2004) 008 [hep-ph/0308252] [INSPIRE].ADSMathSciNetGoogle Scholar
  44. [44]
    N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  45. [45]
    N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, The Littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  46. [46]
    S. Cullen and M. Perelstein, SN1987A constraints on large compact dimensions, Phys. Rev. Lett. 83 (1999) 268 [hep-ph/9903422] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    V.D. Barger, T. Han, C. Kao and R.-J. Zhang, Astrophysical constraints on large extra dimensions, Phys. Lett. B 461 (1999) 34 [hep-ph/9905474] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    C. Hanhart, D.R. Phillips, S. Reddy and M.J. Savage, Extra dimensions, SN1987a and nucleon-nucleon scattering data, Nucl. Phys. B 595 (2001) 335 [nucl-th/0007016] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    S. Hannestad and G.G. Raffelt, Stringent neutron star limits on large extra dimensions, Phys. Rev. Lett. 88 (2002) 071301 [hep-ph/0110067] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S. Hannestad and G. Raffelt, New supernova limit on large extra dimensions, Phys. Rev. Lett. 87 (2001) 051301 [hep-ph/0103201] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    D. Atwood, C.P. Burgess, E. Filotas, F. Leblond, D. London et al., Supersymmetric large extra dimensions are small and/or numerous, Phys. Rev. D 63 (2001) 025007 [hep-ph/0007178] [INSPIRE].ADSGoogle Scholar
  52. [52]
    S. Randjbar-Daemi, A. Salam, E. Sezgin and J.A. Strathdee, An Anomaly Free Model in Six-Dimensions, Phys. Lett. B 151 (1985) 351 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  53. [53]
    M.B. Green, J.H. Schwarz and P.C. West, Anomaly Free Chiral Theories in Six-Dimensions, Nucl. Phys. B 254 (1985) 327 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  54. [54]
    J. Erler, Anomaly cancellation in six-dimensions, J. Math. Phys. 35 (1994) 1819 [hep-th/9304104] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  55. [55]
    E.G. Adelberger, B.R. Heckel and A.E. Nelson, Tests of the gravitational inverse square law, Ann. Rev. Nucl. Part. Sci. 53 (2003) 77 [hep-ph/0307284] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    C.D. Hoyle, D.J. Kapner, B.R. Heckel, E.G. Adelberger, J.H. Gundlach et al., Sub-millimeter tests of the gravitational inverse-square law, Phys. Rev. D 70 (2004) 042004 [hep-ph/0405262] [INSPIRE].ADSGoogle Scholar
  57. [57]
    D. Lüst, S. Stieberger and T.R. Taylor, The LHC String Hunters Companion, Nucl. Phys. B 808 (2009) 1 [arXiv:0807.3333] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    L.A. Anchordoqui, H. Goldberg, D. Lüst, S. Nawata, S. Stieberger et al., Dijet signals for low mass strings at the LHC, Phys. Rev. Lett. 101 (2008) 241803 [arXiv:0808.0497] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    L.A. Anchordoqui, H. Goldberg, D. Lüst, S. Nawata, S. Stieberger et al., LHC Phenomenology for String Hunters, Nucl. Phys. B 821 (2009) 181 [arXiv:0904.3547] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    ATLAS, CMS collaboration, Search for extra-dimensions, \( \overline{t} t \) resonances, 4th generation and leptoquark signatures at the LHC, proceedings of the Moriond EWK 2013 conference, La Thuile, Italy [arXiv:1305.3169] [INSPIRE].
  61. [61]
    ATLAS, CMS collaboration, Exotic Phenomena Searches at Hadron Colliders, proceedings of the PIC 2012, Strbske Pleso, Slovakia [arXiv:1301.2521] [INSPIRE].
  62. [62]
    R. Franceschini, P.P. Giardino, G.F. Giudice, P. Lodone and A. Strumia, LHC bounds on large extra dimensions, JHEP 05 (2011) 092 [arXiv:1101.4919] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    S. Weinberg, Gravitation and Cosmology, Wiley (1973).Google Scholar
  64. [64]
    G.W. Gibbons, R. Güven and C.N. Pope, 3-branes and uniqueness of the Salam-Sezgin vacuum, Phys. Lett. B 595 (2004) 498 [hep-th/0307238] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    C.P. Burgess, F. Quevedo, G. Tasinato and I. Zavala, General axisymmetric solutions and self-tuning in 6D chiral gauged supergravity, JHEP 11 (2004) 069 [hep-th/0408109] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  66. [66]
    J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  67. [67]
    B.S. De Witt, Dynamical Theory of Groups and Fields, in Relativity, Groups and Topology, B.S. De Witt and C. De Witt eds., New York, Gordon and Breach (1965).Google Scholar
  68. [68]
    P.B. Gilkey, The Spectral geometry of a Riemannian manifold, J. Diff. Geom. 10 (1975) 601 [INSPIRE].MATHMathSciNetGoogle Scholar
  69. [69]
    S.M. Christensen, M.J. Duff, G.W. Gibbons and M. Roček, Vanishing One Loop β-function in Gauged N > 4 Supergravity, Phys. Rev. Lett. 45 (1980) 161 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    D.M. McAvity and H. Osborn, A DeWitt expansion of the heat kernel for manifolds with a boundary, Class. Quant. Grav. 8 (1991) 603 [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  71. [71]
    D.V. Vassilevich, Heat kernel expansion: Users manual, Phys. Rept. 388 (2003) 279 [hep-th/0306138] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  72. [72]
    D. Hoover and C.P. Burgess, Ultraviolet sensitivity in higher dimensions, JHEP 01 (2006) 058 [hep-th/0507293] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    C.P. Burgess and D. Hoover, UV sensitivity in supersymmetric large extra dimensions: The Ricci-flat case, Nucl. Phys. B 772 (2007) 175 [hep-th/0504004] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    C.R. Ordonez and M.A. Rubin, Graviton Dominance in Quantum Kaluza-Klein Theory, Nucl. Phys. B 260 (1985) 456 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  75. [75]
    A. Vilenkin, Gravitational Field of Vacuum Domain Walls and Strings, Phys. Rev. D 23 (1981) 852 [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Department of Physics & AstronomyMcMaster UniversityHamiltonCanada
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  3. 3.Abdus Salam ICTPTriesteItaly

Personalised recommendations