Advertisement

Heterotic flux backgrounds and their IIA duals

  • Ilarion V. Melnikov
  • Ruben Minasian
  • Stefan Theisen
Open Access
Article

Abstract

We study four-dimensional heterotic flux vacua with N = 2 spacetime supersymmetry. A worldsheet perspective is used to clarify quantization conditions associated to the fluxes and the constraints these place on the moduli spaces of resulting compactifications. We propose that these vacua fit naturally in the context of heterotic/IIA duality as heterotic duals to compactifications on K3-fibered but not elliptically fibered Calabi-Yau three-folds. We present some examples of such potential dual pairs.

Keywords

Extended Supersymmetry Superstrings and Heterotic Strings Anomalies in Field and String Theories Sigma Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Kachru and C. Vafa, Exact results for N = 2 compactifications of heterotic strings, Nucl. Phys. B 450 (1995) 69 [hep-th/9505105] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    S. Ferrara, J.A. Harvey, A. Strominger and C. Vafa, Second quantized mirror symmetry, Phys. Lett. B 361 (1995) 59 [hep-th/9505162] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    P.S. Aspinwall, K3 surfaces and string duality, hep-th/9611137 [INSPIRE].
  4. [4]
    P.S. Aspinwall, Compactification, geometry and duality: N = 2, hep-th/0001001 [INSPIRE].
  5. [5]
    A. Klemm, W. Lerche and P. Mayr, K3 fibrations and heterotic type-II string duality, Phys. Lett. B 357 (1995) 313 [hep-th/9506112] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    P.S. Aspinwall and J. Louis, On the ubiquity of K3 fibrations in string duality, Phys. Lett. B 369 (1996) 233 [hep-th/9510234] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    C.M. Hull and E. Witten, Supersymmetric σ-models and the Heterotic string, Phys. Lett. B 160 (1985) 398 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    A. Sen, (2, 0) supersymmetry and space-time supersymmetry in the heterotic string theory, Nucl. Phys. B 278 (1986) 289 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    T. Banks, L.J. Dixon, D. Friedan and E.J. Martinec, Phenomenology and conformal field theory or can string theory predict the weak mixing angle?, Nucl. Phys. B 299 (1988) 613 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    T. Banks and L.J. Dixon, Constraints on string vacua with space-time supersymmetry, Nucl. Phys. B 307 (1988) 93 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    J. Lauer, D. Lüst and S. Theisen, Supersymmetric string theories, superconformal algebras and exceptional groups, Nucl. Phys. B 309 (1988) 771 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    E. Witten, Small instantons in string theory, Nucl. Phys. B 460 (1996) 541 [hep-th/9511030] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    P.S. Aspinwall and D.R. Morrison, Point-like instantons on K3 orbifolds, Nucl. Phys. B 503 (1997) 533 [hep-th/9705104] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    D. Friedan, E.J. Martinec and S.H. Shenker, Conformal invariance, supersymmetry and string theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    J. Polchinski, String theory, volume 2, Cambridge University Press, Cambridge U.K. (1998).Google Scholar
  16. [16]
    L.J. Dixon, V. Kaplunovsky and C. Vafa, On four-dimensional gauge theories from type II superstrings, Nucl. Phys. B 294 (1987) 43 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    B. de Wit, V. Kaplunovsky, J. Louis and D. Lüst, Perturbative couplings of vector multiplets in N = 2 heterotic string vacua, Nucl. Phys. B 451 (1995) 53 [hep-th/9504006] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. Distler and E. Sharpe, Heterotic compactifications with principal bundles for general groups and general levels, Adv. Theor. Math. Phys. 14 (2010) 335 [hep-th/0701244] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  19. [19]
    C.M. Hull and P.K. Townsend, World sheet supersymmetry and anomaly cancellation in the heterotic string, Phys. Lett. B 178 (1986) 187 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    M.F. Atiyah, N.J. Hitchin and I.M. Singer, Selfduality in four-dimensional riemannian geometry, Proc. Roy. Soc. Lond. A 362 (1978) 425 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    T. Eguchi, P.B. Gilkey and A.J. Hanson, Gravitation, gauge theories and differential geometry, Phys. Rept. 66 (1980) 213 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    J.W. Milnor and J.D. Stasheff, Characteristic classes, Princeton University Press, Princeton U.S.A. (1974).MATHGoogle Scholar
  23. [23]
    E. Witten, Global anomalies in string theory, in Argonne symposium on geometry, anomalies and topology, W. A. Bardeen ed., Argonne France (1985).Google Scholar
  24. [24]
    D. Freed, Determinants, torsion, and strings, Commun. Math. Phys. 107 (1986) 483 [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  25. [25]
    J. Distler, Resurrecting (2,0) compactifications, Phys. Lett. B 188 (1987) 431 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    H.B. Lawson Jr. and M.L. Michelsohn, Spin geometry, Princeton Mathematical Series volume 38, Princeton University Press, Princeton U.S.A. (1989).Google Scholar
  27. [27]
    I.V. Melnikov and R. Minasian, Heterotic σ-models with N = 2 space-time supersymmetry, JHEP 09 (2011) 065 [arXiv:1010.5365] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    D.D. Joyce, Riemannian holonomy groups and calibrated geometry, Oxford Graduate Texts in Mathematics volume 12, Oxford University Press, Oxford U.K. (2007).Google Scholar
  29. [29]
    C.P. Boyer, A note on hyper-Hermitian four-manifolds, Proc. Amer. Math. Soc. 102 (1988) 157.MATHMathSciNetGoogle Scholar
  30. [30]
    M. Becker, L.-S. Tseng and S.-T. Yau, New heterotic non-Kähler geometries, Adv. Theor. Math. Phys. 13 (2009) 1815 [arXiv:0807.0827] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  31. [31]
    D. Israel and L. Carlevaro, Local models of heterotic flux vacua: spacetime and worldsheet aspects, Fortsch. Phys. 59 (2011) 716 [arXiv:1109.1534] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  32. [32]
    K. Becker, M. Becker, J.-X. Fu, L.-S. Tseng and S.-T. Yau, Anomaly cancellation and smooth non-Kähler solutions in heterotic string theory, Nucl. Phys. B 751 (2006) 108 [hep-th/0604137] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    K. Kodaira, Complex manifolds and deformation of complex structures, Classics in Mathematics, Springer, Berlin Germany (2005).Google Scholar
  34. [34]
    A. Strominger, Superstrings with torsion, Nucl. Phys. B 274 (1986) 253 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    C.M. Hull, Compactifications of the heterotic superstring, Phys. Lett. B 178 (1986) 357 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    S. Groot Nibbelink and L. Horstmeyer, Super weyl invariance: BPS equations from heterotic worldsheets, JHEP 07 (2012) 054 [arXiv:1203.6827] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  37. [37]
    K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    J.-X. Fu and S.-T. Yau, The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampere equation, J. Diff. Geom. 78 (2009) 369 [hep-th/0604063] [INSPIRE].MathSciNetGoogle Scholar
  39. [39]
    E. Witten, World sheet corrections via D instantons, JHEP 02 (2000) 030 [hep-th/9907041] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  40. [40]
    O. Alvarez, Topological quantization and cohomology, Commun. Math. Phys. 100 (1985) 279.ADSCrossRefMATHGoogle Scholar
  41. [41]
    R. Rohm and E. Witten, The antisymmetric tensor field in superstring theory, Annals Phys. 170 (1986) 454 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  42. [42]
    M.J. Hopkins and I.M. Singer, Quadratic functions in geometry, topology and M-theory, J. Diff. Geom. 70 (2005) 329 [math/0211216] [INSPIRE].MATHMathSciNetGoogle Scholar
  43. [43]
    M. Bershadsky et al., Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215 [hep-th/9605200] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  44. [44]
    G. Honecker, Massive U(1)s and heterotic five-branes on K3, Nucl. Phys. B 748 (2006) 126 [hep-th/0602101] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  45. [45]
    C.H. Taubes, Self-dual Yang-Mills connections on non-self-dual 4-manifolds, J. Diff. Geom. 17 (1982)139.MATHMathSciNetGoogle Scholar
  46. [46]
    D.S. Freed and K.K. Uhlenbeck, Instantons and four-manifolds, Mathematical Sciences Research Institute Publications, Springer, New York U.S.A. (1991).CrossRefGoogle Scholar
  47. [47]
    S.K. Donaldson and P.B. Kronheimer, The geometry of four-manifolds, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York U.S.A. (1990).Google Scholar
  48. [48]
    E. Witten, Heterotic string conformal field theory and A-D-E singularities, JHEP 02 (2000) 025 [hep-th/9909229] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  49. [49]
    D. Huybrechts, Moduli spaces of hyperkähler manifolds and mirror symmetry, in Intersection theory and moduli, ICTP Lect. Notes XIX, Abdus Salam ICTP, Trieste Italy (2004).Google Scholar
  50. [50]
    M. Dine, N. Seiberg and E. Witten, Fayet-Iliopoulos terms in string theory, Nucl. Phys. B 289 (1987) 589 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  51. [51]
    G. Honecker and M. Trapletti, Merging heterotic orbifolds and K3 compactifications with line bundles, JHEP 01 (2007) 051 [hep-th/0612030] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  52. [52]
    R. Donagi and M. Wijnholt, Higgs bundles and UV completion in F-theory, Commun. Math. Phys. 326 (2014) 287 [arXiv:0904.1218] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  53. [53]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, The Atiyah class and complex structure stabilization in heterotic Calabi-Yau compactifications, JHEP 10 (2011) 032 [arXiv:1107.5076] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  54. [54]
    I.V. Melnikov and E. Sharpe, On marginal deformations of (0, 2) non-linear σ-models, Phys. Lett. B 705 (2011) 529 [arXiv:1110.1886] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  55. [55]
    J. Distler and B.R. Greene, Aspects of (2,0) string compactifications, Nucl. Phys. B 304 (1988) 1 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  56. [56]
    P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley-Interscience, New York U.S.A. (1978).MATHGoogle Scholar
  57. [57]
    W.P. Barth, K. Hulek, C.A.M. Peters and A. Van de Ven, Compact complex surfaces, volume 4, Springer, Berlin Germany (2004).CrossRefGoogle Scholar
  58. [58]
    V. Kumar and W. Taylor, Freedom and constraints in the K3 landscape, JHEP 05 (2009) 066 [arXiv:0903.0386] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  59. [59]
    K. Oguiso, On algebraic fiber space structures on a Calabi-Yau 3-fold, Internat. J. Math. 4 (1993) 439.CrossRefMATHMathSciNetGoogle Scholar
  60. [60]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1, Nucl. Phys. B 473 (1996) 74 [hep-th/9602114] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  61. [61]
    S. Ferrara, R. Minasian and A. Sagnotti, Low-energy analysis of M and F theories on Calabi-Yau threefolds, Nucl. Phys. B 474 (1996) 323 [hep-th/9604097] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  62. [62]
    A.C. Avram, M. Kreuzer, M. Mandelberg and H. Skarke, Searching for K3 fibrations, Nucl. Phys. B 494 (1997) 567 [hep-th/9610154] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  63. [63]
    A. Klemm, M. Kreuzer, E. Riegler and E. Scheidegger, Topological string amplitudes, complete intersection Calabi-Yau spaces and threshold corrections, JHEP 05 (2005) 023 [hep-th/0410018] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  64. [64]
    V. Kaplunovsky, J. Louis and S. Theisen, Aspects of duality in N = 2 string vacua, Phys. Lett. B 357 (1995) 71 [hep-th/9506110] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  65. [65]
    P. Candelas, X. De La Ossa, A. Font, S.H. Katz and D.R. Morrison, Mirror symmetry for two parameter models. 1, Nucl. Phys. B 416 (1994) 481 [hep-th/9308083] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    S. Hosono, A. Klemm, S. Theisen and S.-T. Yau, Mirror symmetry, mirror map and applications to Calabi-Yau hypersurfaces, Commun. Math. Phys. 167 (1995) 301 [hep-th/9308122] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  67. [67]
    G. Aldazabal, A. Font, L.E. Ibáñez and F. Quevedo, Chains of N = 2, D = 4 heterotic type-II duals, Nucl. Phys. B 461 (1996) 85 [hep-th/9510093] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    P. Candelas and A. Font, Duality between the webs of heterotic and type-II vacua, Nucl. Phys. B 511 (1998) 295 [hep-th/9603170] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  69. [69]
    J. Evslin and R. Minasian, Topology change from (heterotic) Narain T-duality, Nucl. Phys. B 820 (2009) 213 [arXiv:0811.3866] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  70. [70]
    K. Gawedzki and A. Kupiainen, G/h conformal field theory from gauged WZW model, Phys. Lett. B 215 (1988) 119 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  71. [71]
    E. Witten, On holomorphic factorization of WZW and coset models, Commun. Math. Phys. 144 (1992) 189 [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  72. [72]
    P. Berglund, C.V. Johnson, S. Kachru and P. Zaugg, Heterotic coset models and (0, 2) string vacua, Nucl. Phys. B 460 (1996) 252 [hep-th/9509170] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  73. [73]
    A. Adams and D. Guarrera, Heterotic flux vacua from hybrid linear models, arXiv:0902.4440 [INSPIRE].
  74. [74]
    R. Rohm, Anomalous interactions for the supersymmetric nonlinear σ model in two-dimensions, Phys. Rev. D 32 (1985) 2849 [INSPIRE].ADSGoogle Scholar
  75. [75]
    E. Witten, The N matrix model and gauged WZW models, Nucl. Phys. B 371 (1992) 191 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  76. [76]
    S.M. Salamon, Hermitian geometry, in Invitations to geometry and topology, Oxford Grad.uate Texts in Mathematics volume 7, Oxford University Press, Oxford U.K. (2002).Google Scholar
  77. [77]
    J. McOrist, D.R. Morrison and S. Sethi, Geometries, non-geometries and fluxes, arXiv:1004.5447 [INSPIRE].
  78. [78]
    S. Sethi, C. Vafa and E. Witten, Constraints on low dimensional string compactifications, Nucl. Phys. B 480 (1996) 213 [hep-th/9606122] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  79. [79]
    S. Ketov, Quantum non-linear sigma models, Springer, Berlin Germany (2000).CrossRefGoogle Scholar
  80. [80]
    M.B. Green and N. Seiberg, Contact interactions in superstring theory, Nucl. Phys. B 299 (1988) 559 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  81. [81]
    D.H. Friedan, Nonlinear models in two + epsilon dimensions, Annals Phys. 163 (1985) 318 [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  82. [82]
    L. Álvarez-Gaumé, D.Z. Freedman and S. Mukhi, The background field method and the ultraviolet structure of the supersymmetric nonlinear σ-model, Ann. Phys. 134 (1981) 85 [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485-486] [hep-th/9407087] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  84. [84]
    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  85. [85]
    P.C. Argyres, M.R. Plesser and N. Seiberg, The moduli space of vacua of N = 2 SUSY QCD and duality in N = 1 SUSY QCD, Nucl. Phys. B 471 (1996) 159 [hep-th/9603042] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  86. [86]
    P.C. Argyres, M.R. Plesser and A.D. Shapere, N = 2 moduli spaces and N = 1 dualities for SO(n c) and USp(2n c) superQCD, Nucl. Phys. B 483 (1997) 172 [hep-th/9608129] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  87. [87]
    F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N = 2 superconformal field theories, JHEP 09 (2009) 052 [arXiv:0906.0359] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  88. [88]
    A. Hanany and N. Mekareeya, Tri-vertices and SU(2)’s, JHEP 02 (2011) 069 [arXiv:1012.2119] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  89. [89]
    O. Chacaltana, J. Distler and Y. Tachikawa, Nilpotent orbits and codimension-two defects of 6d N = (2, 0) theories, Int. J. Mod. Phys. A 28 (2013) 1340006 [arXiv:1203.2930] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  90. [90]
    T. Kugo and J. Sato, Dynamical symmetry breaking in an E 6 GUT model, Prog. Theor. Phys. 91 (1994) 1217 [hep-ph/9402357] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    T.W. Kephart and M.T. Vaughn, Tensor methods for the exceptional group E 6, Annals Phys. 145 (1983) 162 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  92. [92]
    F. Gursey, Symmetry breaking patterns in E 6, talk at the Workshop on grand unified theories, April 10-2, New Hapshire, U.S.A. (1980).Google Scholar
  93. [93]
    M.J. Duff, R. Minasian and E. Witten, Evidence for heterotic/heterotic duality, Nucl. Phys. B 465 (1996) 413 [hep-th/9601036] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Ilarion V. Melnikov
    • 1
  • Ruben Minasian
    • 2
  • Stefan Theisen
    • 1
  1. 1.Max-Planck-Institut für GravitationsphysikAlbert-Einstein-InstitutGolmGermany
  2. 2.Institut de Physique ThéoriqueCEA/SaclayGif-sur-Yvette CedexFrance

Personalised recommendations