Advertisement

\( \mathcal{N}=1 \) extension of minimal model holography

  • Matteo Beccaria
  • Constantin Candu
  • Matthias R. Gaberdiel
  • Michael Groher
Article

Abstract

The CFT dual of the higher spin theory with minimal \( \mathcal{N}=1 \) spectrum is determined. Unlike previous examples of minimal model holography, there is no free parameter beyond the central charge, and the CFT can be described in terms of a non-diagonal modular invariant of the bosonic theory at the special value of the ’t Hooft parameter \( \lambda =\frac{1}{2} \). As evidence in favour of the duality we show that the symmetry algebras as well as the partition functions agree between the two descriptions.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence 

References

  1. [1]
    M. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS(d), Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].MathSciNetADSGoogle Scholar
  2. [2]
    B. Sundborg, Stringy gravity, interacting tensionless strings and massless higher spins, Nucl. Phys. Proc. Suppl. 102 (2001) 113 [hep-th/0103247] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    E. Witten, Spacetime Reconstruction, talk given at John Schwarz 60 th birthday symposium, California Institute of Technology, U.S.A., 3-4 November 2001 [http://theory.caltech.edu/jhs60/witten/1.html].
  4. [4]
    A. Mikhailov, Notes on higher spin symmetries, hep-th/0201019 [INSPIRE].
  5. [5]
    I. Klebanov and A. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    E. Sezgin and P. Sundell, Holography in 4D (super) higher spin theories and a test via cubic scalar couplings, JHEP 07 (2005) 044 [hep-th/0305040] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    S. Giombi and X. Yin, Higher Spin Gauge Theory and Holography: the Three-Point Functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    S. Giombi and X. Yin, Higher Spins in AdS and Twistorial Holography, JHEP 04 (2011) 086 [arXiv:1004.3736] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    S. Prokushkin and M.A. Vasiliev, Higher spin gauge interactions for massive matter fields in 3−D AdS space-time, Nucl. Phys. B 545 (1999) 385 [hep-th/9806236] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    S. Prokushkin and M.A. Vasiliev, 3 − D higher spin gauge theories with matter, hep-th/9812242 [INSPIRE].
  11. [11]
    M.R. Gaberdiel and R. Gopakumar, An AdS 3 Dual for Minimal Model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].ADSGoogle Scholar
  12. [12]
    M. Henneaux and S.-J. Rey, Nonlinear W infty as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    M.R. Gaberdiel and T. Hartman, Symmetries of Holographic Minimal Models, JHEP 05 (2011) 031 [arXiv:1101.2910] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    M.R. Gaberdiel and R. Gopakumar, Triality in Minimal Model Holography, JHEP 07 (2012) 127 [arXiv:1205.2472] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    M.R. Gaberdiel, R. Gopakumar, T. Hartman and S. Raju, Partition Functions of Holographic Minimal Models, JHEP 08 (2011) 077 [arXiv:1106.1897] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    A. Castro, R. Gopakumar, M. Gutperle and J. Raeymaekers, Conical Defects in Higher Spin Theories, JHEP 02 (2012) 096 [arXiv:1111.3381] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    E. Perlmutter, T. Prochazka and J. Raeymaekers, The semiclassical limit of W N CFTs and Vasiliev theory, JHEP 05 (2013) 007 [arXiv:1210.8452] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    K. Papadodimas and S. Raju, Correlation Functions in Holographic Minimal Models, Nucl. Phys. B 856 (2012) 607 [arXiv:1108.3077] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    C.-M. Chang and X. Yin, Higher Spin Gravity with Matter in AdS 3 and Its CFT Dual, JHEP 10 (2012) 024 [arXiv:1106.2580] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    C.-M. Chang and X. Yin, Correlators in W N Minimal Model Revisited, JHEP 10 (2012) 050 [arXiv:1112.5459] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    C. Ahn, The Coset Spin-4 Casimir Operator and Its Three-Point Functions with Scalars, JHEP 02 (2012) 027 [arXiv:1111.0091] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Ammon, P. Kraus and E. Perlmutter, Scalar fields and three-point functions in D = 3 higher spin gravity, JHEP 07 (2012) 113 [arXiv:1111.3926] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    J. Maldacena and A. Zhiboedov, Constraining Conformal Field Theories with A Higher Spin Symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].ADSGoogle Scholar
  25. [25]
    J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, Class. Quant. Grav. 30 (2013) 104003 [arXiv:1204.3882] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M.R. Gaberdiel and R. Gopakumar, Minimal Model Holography, J. Phys. A 46 (2013) 214002 [arXiv:1207.6697] [INSPIRE].ADSGoogle Scholar
  27. [27]
    C. Ahn, The Large-Nt Hooft Limit of Coset Minimal Models, JHEP 10 (2011) 125 [arXiv:1106.0351] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M.R. Gaberdiel and C. Vollenweider, Minimal Model Holography for SO(2N), JHEP 08 (2011) 104 [arXiv:1106.2634] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    T. Creutzig, Y. Hikida and P.B. Ronne, Higher spin AdS 3 supergravity and its dual CFT, JHEP 02 (2012) 109 [arXiv:1111.2139] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    C. Candu and M.R. Gaberdiel, Supersymmetric holography on AdS 3, arXiv:1203.1939 [INSPIRE].
  31. [31]
    T. Creutzig, Y. Hikida and P.B. Rønne, N=1 supersymmetric higher spin holography on AdS 3, JHEP 02 (2013) 019 [arXiv:1209.5404] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    C. Candu and C. Vollenweider, The N = 1 algebra W [μ] and its truncations, arXiv:1305.0013 [INSPIRE].
  33. [33]
    E. Fradkin and M.A. Vasiliev, Candidate to the Role of Higher Spin Symmetry, Annals Phys. 177 (1987) 63 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    A. Jevicki and J. Yoon, Field Theory of Primaries in W N Minimal Models, arXiv:1302.3851 [INSPIRE].
  35. [35]
    C.-M. Chang and X. Yin, A semi-local holographic minimal model, arXiv:1302.4420 [INSPIRE].
  36. [36]
    K. Schoutens and A. Sevrin, Minimal superW(N) algebras in coset conformal field theories, Phys. Lett. B 258 (1991) 134 [INSPIRE].MathSciNetADSGoogle Scholar
  37. [37]
    D.J. Gross and W. Taylor, Two-dimensional QCD is a string theory, Nucl. Phys. B 400 (1993) 181 [hep-th/9301068] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    I.G. MacDonald, Symmetric functions and Hall polynomials, Oxford University Press (1979).Google Scholar
  39. [39]
    J.M. Figueroa-O’Farrill and S. Schrans, The Conformal bootstrap and super W algebras, Int. J. Mod. Phys. A 7 (1992) 591 [INSPIRE].MathSciNetADSGoogle Scholar
  40. [40]
    R. Blumenhagen, Covariant construction of N = 1 superW algebras, Nucl. Phys. B 381 (1992) 641 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    C. Candu and M.R. Gaberdiel, Duality in N = 2 Minimal Model Holography, JHEP 02 (2013) 070 [arXiv:1207.6646] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    C. Candu, M.R. Gaberdiel, M. Kelm and C. Vollenweider, Even spin minimal model holography, JHEP 01 (2013) 185 [arXiv:1211.3113] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    T. Inami, Y. Matsuo and I. Yamanaka, Extended conformal algebras with N = 1 supersymmetry, Phys. Lett. B 215 (1988) 701 [INSPIRE].MathSciNetADSGoogle Scholar
  44. [44]
    K. Hornfeck, The Minimal supersymmetric extension of WA(n-1), Phys. Lett. B 275 (1992) 355 [INSPIRE].MathSciNetADSGoogle Scholar
  45. [45]
    K. Hornfeck, W algebras with set of primary fields of dimensions (3, 4, 5) and (3, 4, 5, 6), Nucl. Phys. B 407 (1993) 237 [hep-th/9212104] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    E. Bergshoeff, B. de Wit and M.A. Vasiliev, The structure of the super-W (λ) algebra, Phys. Nucl. B 366 (1991) 315.ADSCrossRefGoogle Scholar
  47. [47]
    M. Blencowe, A consistent interacting massless higher spin field theory in D = (2 + 1), Class. Quant. Grav. 6 (1989) 443 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    P. Bowcock, Quasi-primary fields and associativity of chiral algebras, Nucl. Phys. B 356 (1991) 367 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    M.R. Gaberdiel, R. Gopakumar and A. Saha, Quantum W -symmetry in AdS 3, JHEP 02 (2011) 004 [arXiv:1009.6087] [INSPIRE].MathSciNetADSGoogle Scholar
  50. [50]
    S. Giombi, A. Maloney and X. Yin, One-loop Partition Functions of 3D Gravity, JHEP 08 (2008) 007 [arXiv:0804.1773] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    R. King, Modification rules and products of irreducible representations of the unitary, orthogonal and symplectic groups, J. Math. Phys. 12 (1971) 1588 [INSPIRE].ADSMATHCrossRefGoogle Scholar
  52. [52]
    S.G. Naculich and H.A. Riggs, The String calculation of QCD Wilson loops on arbitrary surfaces, Phys. Rev. D 51 (1995) 4394 [hep-th/9411143] [INSPIRE].MathSciNetADSGoogle Scholar
  53. [53]
    R. King, Generalized Young tableaux and the general linear group, J. Math. Phys. 11 (1970) 280.ADSMATHCrossRefGoogle Scholar
  54. [54]
    J. Abramsky and R. King, Formation and decay of negative-parity baryon resonances in a broken u(6,6) model, Nuovo Cim. A 67 (1970) 153 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Matteo Beccaria
    • 1
  • Constantin Candu
    • 2
  • Matthias R. Gaberdiel
    • 2
  • Michael Groher
    • 2
  1. 1.Dipartimento di Matematica e Fisica “Ennio De Giorgi”Università del Salento and INFNLecceItaly
  2. 2.Institut für Theoretische Physik, ETH ZurichZürichSwitzerland

Personalised recommendations