Advertisement

Chern-Simons supergravities, with a twist

  • Leonardo Castellani
Article

Abstract

We discuss noncommutative extensions of Chern-Simons (CS) supergravities in odd dimensions. The example of D = 5 CS supergravity, invariant under the gauge supergroup SU(2, 2|N), is worked out in detail. Its noncommutative version, with a ⋆-product associated to an abelian Drinfeld twist, is found to exist only for N = 4.

Keywords

Supersymmetric gauge theory Non-Commutative Geometry Chern-Simons Theories Supergravity Models 

References

  1. [1]
    R. Troncoso and J. Zanelli, Gauge supergravities for all odd dimensions, Int. J. Theor. Phys. 38 (1999) 1181 [hep-th/9807029] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    J. Zanelli, Lecture notes on Chern-Simons (super-)gravities. Second edition (February 2008), hep-th/0502193 [INSPIRE].
  3. [3]
    J. Zanelli, Chern-Simons forms in gravitation theories, Class. Quant. Grav. 29 (2012) 133001 [arXiv:1208.3353] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  5. [5]
    A. Connes, Non-commutative geometry, Academic Press, U.S.A. (1994).Google Scholar
  6. [6]
    G. Landi, An introduction to noncommutative spaces and their geometry, hep-th/9701078 [INSPIRE].
  7. [7]
    J. Madore, An introduction to noncommutative differential geometry and its physical applications, 2nd edition, Cambridge University Press, Cambridge U.K. (1999).MATHCrossRefGoogle Scholar
  8. [8]
    L. Castellani, Noncommutative geometry and physics: a review of selected recent results, Class. Quant. Grav. 17 (2000) 3377 [hep-th/0005210] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  9. [9]
    M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2001) 977 [hep-th/0106048] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  10. [10]
    R.J. Szabo, Quantum field theory on noncommutative spaces, Phys. Rept. 378 (2003) 207 [hep-th/0109162] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  11. [11]
    P. Aschieri et al., Noncommutative spacetimes, Lecture Notes in Physics volume 774, Springer, U.S.A. (2009).CrossRefGoogle Scholar
  12. [12]
    S. Cacciatori and L. Martucci, Noncommutative AdS supergravity in three-dimensions, Phys. Lett. B 542 (2002) 268 [hep-th/0204152] [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    P. Aschieri and L. Castellani, Noncommutative supergravity in D = 3 and D = 4, JHEP 06 (2009) 087 [arXiv:0902.3823] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    L. Castellani, OSp(1|4) supergravity and its noncommutative extension, Phys. Rev. D 88 (2013) 025022 [arXiv:1301.1642] [INSPIRE].Google Scholar
  15. [15]
    A. Chamseddine, Invariant actions for noncommutative gravity, J. Math. Phys. 44 (2003) 2534 [hep-th/0202137] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  16. [16]
    H. Garcia-Compean, O. Obregon, C. Ramirez and M. Sabido, Noncommutative topological theories of gravity, Phys. Rev. D 68 (2003) 045010 [hep-th/0210203] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    M.A. Cardella and D. Zanon, Noncommutative deformation of four-dimensional Einstein gravity, Class. Quant. Grav. 20 (2003) L95 [hep-th/0212071] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  18. [18]
    P. Aschieri and L. Castellani, Noncommutative D = 4 gravity coupled to fermions, JHEP 06 (2009) 086 [arXiv:0902.3817] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    M. Dimitrijević, V. Radovanović and H. Stefancic, AdS-inspired noncommutative gravity on the Moyal plane, Phys. Rev. D 86 (2012) 105041 [arXiv:1207.4675] [INSPIRE].ADSGoogle Scholar
  20. [20]
    A.H. Chamseddine and J. Fröhlich, The Chern-Simons action in noncommutative geometry, J. Math. Phys. 35 (1994) 5195 [hep-th/9406013] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  21. [21]
    M. Nakahara, Geometry, topology and physics, Taylor and Francis, U.K. (2003).MATHGoogle Scholar
  22. [22]
    T. Eguchi, P.B. Gilkey and A.J. Hanson, Gravitation, gauge theories and differential geometry, Phys. Rept. 66 (1980) 213 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    J.E. Moyal, Quantum mechanics as a statistical theory, Proc. Camb. Phil. Soc. 45 (1949) 99.MathSciNetADSMATHCrossRefGoogle Scholar
  24. [24]
    H. Groenewold, On the principles of elementary quantum mechanics, Physica 12 (1946) 405 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  25. [25]
    L. Castellani, R. D’Auria and P. Fré, Supergravity and superstrings: a geometric perspective. Volume 2: supergravity, World Scientific, Singapore (1991).Google Scholar
  26. [26]
    A.H. Chamseddine, Topological gravity and supergravity in various dimensions, Nucl. Phys. B 346 (1990) 213 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    P. Aschieri and L. Castellani, Noncommutative gravity coupled to fermions: second order expansion via Seiberg-Witten map, JHEP 07 (2012) 184 [arXiv:1111.4822] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    P. Aschieri, L. Castellani and M. Dimitrijević, Noncommutative gravity at second order via Seiberg-Witten map, Phys. Rev. D 87 (2013) 024017 [arXiv:1207.4346] [INSPIRE].ADSGoogle Scholar
  30. [30]
    T. Pengpan and X. Xiong, A note on the noncommutative Wess-Zumino model, Phys. Rev. D 63 (2001) 085012 [hep-th/0009070] [INSPIRE].MathSciNetADSGoogle Scholar
  31. [31]
    P. Aschieri, L. Castellani and M. Dimitrijević, Dynamical noncommutativity and Noether theorem in twisted ϕ 4 theory, Lett. Math. Phys. 85 (2008) 39 [arXiv:0803.4325] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Dipartimento di Scienze e Innovazione Tecnologica, INFN Gruppo collegato di AlessandriaUniversità del Piemonte OrientaleAlessandriaItaly

Personalised recommendations