Estimation of saturation and coherence effects in the KGBJS equation — a non-linear CCFM equation



We solve the modified non-linear extension of the CCFM equation — KGBJS equation [1, 2] — numerically for certain initial conditions and compare the resulting dipole amplitudes with those obtained from solving the original CCFM equation and the BFKL and BK equations for the same initial conditions. We improve the low transversal momentum behaviour of the KGBJS equation by a small modification.


QCD Phenomenology 


  1. [1]
    K. Kutak, Nonlinear extension of the CCFM equation, arXiv:1206.1223 [INSPIRE].
  2. [2]
    K. Kutak, K. Golec-Biernat, S. Jadach and M. Skrzypek, Nonlinear equation for coherent gluon emission, JHEP 02 (2012) 117 [arXiv:1111.6928] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    V.S. Fadin, E. Kuraev and L. Lipatov, On the Pomeranchuk Singularity in Asymptotically Free Theories, Phys. Lett. B 60 (1975) 50 [INSPIRE].ADSGoogle Scholar
  4. [4]
    E. Kuraev, L. Lipatov and V.S. Fadin, Multi - Reggeon Processes in the Yang-Mills Theory, Sov. Phys. JETP 44 (1976) 443 [INSPIRE].ADSGoogle Scholar
  5. [5]
    E. Kuraev, L. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Sov. Phys. JETP 45 (1977) 199 [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    I. Balitsky and L. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [INSPIRE].Google Scholar
  7. [7]
    H1 collaboration, F. Aaron et al., Measurement of the Azimuthal Correlation between the most Forward Jet and the Scattered Positron in Deep-Inelastic Scattering at HERA, Eur. Phys. J. C 72 (2012) 1910 [arXiv:1111.4227] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Hentschinski, A. Sabio Vera and C. Salas, The hard to soft Pomeron transition in small x DIS data using optimal renormalization, Phys. Rev. Lett. 110 (2013) 041601 [arXiv:1209.1353] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    G. Beuf, High-Energy Factorization and Evolution with Improved Kinematics, Int. J. Mod. Phys. Conf. Ser. 04 (2011) 56 [arXiv:1109.0547] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    G. Beuf, Gluon Saturation in QCD at High Energy: beyond Leading Logarithms, AIP Conf. Proc. 1441 (2012) 217 [arXiv:1111.4440] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    V.S. Fadin and L. Lipatov, BFKL Pomeron in the next-to-leading approximation, Phys. Lett. B 429 (1998) 127 [hep-ph/9802290] [INSPIRE].ADSGoogle Scholar
  12. [12]
    J. Bartels, A. Sabio Vera and F. Schwennsen, NLO jet production in k T factorization, arXiv:0709.3249 [INSPIRE].
  13. [13]
    A.H. Mueller, Parton distributions at very small x values, Nucl. Phys. Proc. Suppl. 18C (1991) 125 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    Y.V. Kovchegov, Small x F 2 structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].ADSGoogle Scholar
  15. [15]
    Y.V. Kovchegov, Unitarization of the BFKL Pomeron on a nucleus, Phys. Rev. D 61 (2000) 074018 [hep-ph/9905214] [INSPIRE].ADSGoogle Scholar
  16. [16]
    I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99 [hep-ph/9509348] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    K. Kutak and D. Toton, Gluon saturation scale from the KGBJS equation, arXiv:1306.3369 [INSPIRE].
  18. [18]
    K.J. Golec-Biernat, L. Motyka and A. Stasto, Diffusion into infrared and unitarization of the BFKL Pomeron, Phys. Rev. D 65 (2002) 074037 [hep-ph/0110325] [INSPIRE].ADSGoogle Scholar
  19. [19]
    C. Marquet and G. Soyez, The Balitsky-Kovchegov equation in full momentum space, Nucl. Phys. A 760 (2005) 208 [hep-ph/0504080] [INSPIRE].ADSGoogle Scholar
  20. [20]
    K. Kutak, Gluon saturation and entropy production in proton proton collisions, Phys. Lett. B 705 (2011) 217 [arXiv:1103.3654] [INSPIRE].ADSGoogle Scholar
  21. [21]
    E. Avsar, A. Stasto, D. Triantafyllopoulos and D. Zaslavsky, Next-to-leading and resummed BFKL evolution with saturation boundary, JHEP 10 (2011) 138 [arXiv:1107.1252] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    V. Gribov and L. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [INSPIRE].Google Scholar
  23. [23]
    L. Lipatov, The parton model and perturbation theory, Sov. J. Nucl. Phys. 20 (1975) 94 [INSPIRE].Google Scholar
  24. [24]
    G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e + e Annihilation by Perturbation Theory in Quantum Chromodynamics., Sov. Phys. JETP 46 (1977)641 [INSPIRE].ADSGoogle Scholar
  26. [26]
    M. Ciafaloni, Coherence Effects in Initial Jets at Small Q 2 /s, Nucl. Phys. B 296 (1988) 49 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Catani, F. Fiorani and G. Marchesini, QCD Coherence in Initial State Radiation, Phys. Lett. B 234 (1990) 339 [INSPIRE].ADSGoogle Scholar
  28. [28]
    S. Catani, F. Fiorani and G. Marchesini, Small x Behavior of Initial State Radiation in Perturbative QCD, Nucl. Phys. B 336 (1990) 18 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    G. Marchesini, QCD coherence in the structure function and associated distributions at small x, Nucl. Phys. B 445 (1995) 49 [hep-ph/9412327] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    H. Jung, The CCFM Monte Carlo generator CASCADE, Comput. Phys. Commun. 143 (2002) 100 [hep-ph/0109102] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  31. [31]
    H. Jung and G. Salam, Hadronic final state predictions from CCFM: the Hadron level Monte Carlo generator CASCADE, Eur. Phys. J. C 19 (2001) 351 [hep-ph/0012143] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    H. Jung, S. Baranov, M. Deak, A. Grebenyuk, F. Hautmann, et al., The CCFM Monte Carlo generator CASCADE version 2.2.03, Eur. Phys. J. C 70 (2010) 1237 [arXiv:1008.0152] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    E. Avsar and E. Iancu, CCFM Evolution with Unitarity Corrections, Nucl. Phys. A 829 (2009) 31 [arXiv:0906.2683] [INSPIRE].ADSGoogle Scholar
  34. [34]
    E. Avsar and A.M. Stasto, Non-linear evolution in CCFM: the Interplay between coherence and saturation, JHEP 06 (2010) 112 [arXiv:1005.5153] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    C. Flensburg, G. Gustafson and L. Lönnblad, Inclusive and Exclusive Observables from Dipoles in High Energy Collisions, JHEP 08 (2011) 103 [arXiv:1103.4321] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    K. Kutak, Resummation in nonlinear equation for high energy factorisable gluon density and its extension to include coherence, JHEP 12 (2012) 033 [arXiv:1206.5757] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    Small x collaboration, B. Andersson et al., Small x phenomenology: summary and status, Eur. Phys. J. C 25 (2002) 77 [hep-ph/0204115] [INSPIRE].ADSGoogle Scholar
  38. [38]
    H. Jung, k t factorization and CCFM: the Solution for describing the hadronic final states: everywhere?, Mod. Phys. Lett. A 19 (2004) 1 [hep-ph/0311249] [INSPIRE].ADSGoogle Scholar
  39. [39]
    M. Hansson and H. Jung, Status of CCFM: unintegrated gluon densities, hep-ph/0309009 [INSPIRE].
  40. [40]
    G. Chachamis, M. Deak, A.S. Vera and P. Stephens, A Comparative study of small x Monte Carlos with and without QCD coherence effects, Nucl. Phys. B 849 (2011) 28 [arXiv:1102.1890] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Departamento de Física de Partículas, Facultade de FísicaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Instituto de Física Corpuscular/CSIC, Universitat de ValenciaValenciaSpain

Personalised recommendations