Charged D3-D7 plasmas: novel solutions, extremality and stability issues

  • Francesco Bigazzi
  • Aldo L. Cotrone
  • Javier Tarrío


We study finite temperature \( \mathcal{N}=4 \) Super Yang-Mills (and more general gauge theories realized on intersecting D3-D7 branes) in the presence of dynamical massless fundamental matter fields at finite baryon charge density. We construct the holographic dual charged black hole solutions at first order in the flavor backreaction but exact in the charge density. The thermodynamical properties of the dual gauge theories coincide with the ones found in the usual charged D7-probe limit and the system turns out to be thermodynamically stable. By analyzing the higher order correction in the flavor backreaction, we provide a novel argument for the un-reliability of the charged probe approximation (and the present solution) in the extremality limit, i.e. at zero temperature.

We then consider scalar mesonic-like bound states, whose spectrum is dual to that of linearized fluctuations of D7-brane worldvolume fields around our gravity backgrounds. In particular we focus on a scalar field saturating the Breitenlohner-Freedman bound in the flavorless limit, and coupled to fields dual to irrelevant operators. By looking at quasinormal modes of this scalar, we find no signals of instabilities in the regime of validity of the solutions.


Gauge-gravity correspondence AdS-CFT Correspondence Holography and quark-gluon plasmas 


  1. [1]
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, arXiv:1101.0618 [INSPIRE].
  2. [2]
    S.P. Kumar, Heavy quark density in N = 4 SYM: from hedgehog to Lifshitz spacetimes, JHEP 08 (2012) 155 [arXiv:1206.5140] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite baryon density, JHEP 02 (2007) 016 [hep-th/0611099] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  5. [5]
    S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Ammon, J. Erdmenger, S. Lin, S. Muller, A. O’Bannon and J.P. Shock, On Stability and Transport of Cold Holographic Matter, JHEP 09 (2011) 030 [arXiv:1108.1798] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    M. Graña and J. Polchinski, Gauge/gravity duals with holomorphic dilaton, Phys. Rev. D 65 (2002) 126005 [hep-th/0106014] [INSPIRE].ADSGoogle Scholar
  9. [9]
    M. Bertolini, P. Di Vecchia, M. Frau, A. Lerda and R. Marotta, N=2 gauge theories on systems of fractional D3/D7 branes, Nucl. Phys. B 621 (2002) 157 [hep-th/0107057] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    B.A. Burrington, J.T. Liu, L.A. Pando Zayas and D. Vaman, Holographic duals of flavored N =1 super Yang-Mills: Beyond the probe approximation, JHEP 02(2005) 022 [hep-th/0406207] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    I. Kirsch and D. Vaman, The D3/D7 background and flavor dependence of Regge trajectories, Phys. Rev. D 72 (2005) 026007 [hep-th/0505164] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Meson spectroscopy in AdS/CFT with flavor, JHEP 07 (2003) 049 [hep-th/0304032] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    D. Mateos, R.C. Myers and R.M. Thomson, Holographic phase transitions with fundamental matter, Phys. Rev. Lett. 97 (2006) 091601 [hep-th/0605046] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    T. Albash, V.G. Filev, C.V. Johnson and A. Kundu, A Topology-changing phase transition and the dynamics of flavour, Phys. Rev. D 77 (2008) 066004 [hep-th/0605088] [INSPIRE].ADSGoogle Scholar
  15. [15]
    D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP 05 (2007) 067 [hep-th/0701132] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    A. Karch and A. O’Bannon, Holographic thermodynamics at finite baryon density: Some exact results, JHEP 11 (2007) 074 [arXiv:0709.0570] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite chemical potential, JHEP 11 (2007) 085 [arXiv:0709.1225] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    D. Mateos and L. Patino, Bright branes for strongly coupled plasmas, JHEP 11 (2007) 025 [arXiv:0709.2168] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    R.C. Myers and A. Sinha, The Fast life of holographic mesons, JHEP 06 (2008) 052 [arXiv:0804.2168] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    J. Mas, J.P. Shock, J. Tarrio and D. Zoakos, Holographic Spectral Functions at Finite Baryon Density, JHEP 09 (2008) 009 [arXiv:0805.2601] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    J. Erdmenger, M. Kaminski, P. Kerner and F. Rust, Finite baryon and isospin chemical potential in AdS/CFT with flavor, JHEP 11 (2008) 031 [arXiv:0807.2663] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    M. Ammon, K. Jensen, K.-Y. Kim, J.N. Laia and A. O’Bannon, Moduli Spaces of Cold Holographic Matter, JHEP 11 (2012) 055 [arXiv:1208.3197] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall, Mesons in Gauge/Gravity Duals - A Review, Eur. Phys. J. A 35 (2008) 81 [arXiv:0711.4467] [INSPIRE].ADSGoogle Scholar
  24. [24]
    F. Bigazzi, R. Casero, A. Cotrone, E. Kiritsis and A. Paredes, Non-critical holography and four-dimensional CFTs with fundamentals, JHEP 10 (2005) 012 [hep-th/0505140] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    R. Casero, C. Núñez and A. Paredes, Towards the string dual of N = 1 SQCD-like theories, Phys. Rev. D 73 (2006) 086005 [hep-th/0602027] [INSPIRE].ADSGoogle Scholar
  26. [26]
    F. Benini, F. Canoura, S. Cremonesi, C. Núñez and A.V. Ramallo, Unquenched flavors in the Klebanov-Witten model, JHEP 02 (2007) 090 [hep-th/0612118] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    F. Bigazzi, A.L. Cotrone, J. Mas, A. Paredes, A.V. Ramallo and J. Tarrio, D3-D7 quark-gluon Plasmas, JHEP 11 (2009) 117 [arXiv:0909.2865] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    F. Bigazzi, A.L. Cotrone, J. Mas, D. Mayerson and J. Tarrio, D3-D7 quark-gluon Plasmas at Finite Baryon Density, JHEP 04 (2011) 060 [arXiv:1101.3560] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    F. Bigazzi, A.L. Cotrone, J. Mas, D. Mayerson and J. Tarrio, Holographic Duals of Quark Gluon Plasmas with Unquenched Flavors, Commun. Theor. Phys. 57 (2012) 364 [arXiv:1110.1744] [INSPIRE].MATHCrossRefGoogle Scholar
  30. [30]
    F. Bigazzi, A.L. Cotrone and J. Tarrio, Hydrodynamics of fundamental matter, JHEP 02 (2010) 083 [arXiv:0912.3256] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    F. Bigazzi and A.L. Cotrone, An elementary stringy estimate of transport coefficients of large temperature QCD, JHEP 08 (2010) 128 [arXiv:1006.4634] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Magana, J. Mas, L. Mazzanti and J. Tarrio, Probes on D3-D7 quark-gluon Plasmas, JHEP 07 (2012) 058 [arXiv:1205.6176] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    A.L. Cotrone and J. Tarrio, Consistent reduction of charged D3-D7 systems, JHEP 10 (2012) 164 [arXiv:1207.6703] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    D. Cassani, G. Dall’Agata and A.F. Faedo, Type IIB supergravity on squashed Sasaki-Einstein manifolds, JHEP 05 (2010) 094 [arXiv:1003.4283] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    J.T. Liu, P. Szepietowski and Z. Zhao, Consistent massive truncations of IIB supergravity on Sasaki-Einstein manifolds, Phys. Rev. D 81 (2010) 124028 [arXiv:1003.5374] [INSPIRE].ADSGoogle Scholar
  36. [36]
    J.P. Gauntlett and O. Varela, Universal Kaluza-Klein reductions of type IIB to N = 4 supergravity in five dimensions, JHEP 06 (2010) 081 [arXiv:1003.5642] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    A. Ceresole, G. Dall’Agata, R. D’Auria and S. Ferrara, Spectrum of type IIB supergravity on AdS 5 × T 11 : Predictions on N = 1 SCFTs, Phys. Rev. D 61 (2000) 066001 [hep-th/9905226] [INSPIRE].MathSciNetADSGoogle Scholar
  38. [38]
    S. Benvenuti, M. Mahato, L.A. Pando Zayas and Y. Tachikawa, The Gauge/gravity theory of blown up four cycles, hep-th/0512061 [INSPIRE].
  39. [39]
    F. Bigazzi, A.L. Cotrone, A. Paredes and A.V. Ramallo, Screening effects on meson masses from holography, JHEP 05 (2009) 034 [arXiv:0903.4747] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    H. Chamblin and H. Reall, Dynamic dilatonic domain walls, Nucl. Phys. B 562 (1999) 133 [hep-th/9903225] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    S.S. Gubser, S.S. Pufu and F.D. Rocha, Bulk viscosity of strongly coupled plasmas with holographic duals, JHEP 08 (2008) 085 [arXiv:0806.0407] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    S.S. Gubser and A. Nellore, Mimicking the QCD equation of state with a dual black hole, Phys. Rev. D 78 (2008) 086007 [arXiv:0804.0434] [INSPIRE].ADSGoogle Scholar
  43. [43]
    S.S. Pal, Fermi-like Liquid From Einstein-DBI-Dilaton System, JHEP 04 (2013) 007 [arXiv:1209.3559] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, World-Volume Effective Theory for Higher-Dimensional Black Holes, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of Blackfold Dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    M. Kaminski, K. Landsteiner, J. Mas, J.P. Shock and J. Tarrio, Holographic Operator Mixing and Quasinormal Modes on the Brane, JHEP 02 (2010) 021 [arXiv:0911.3610] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  49. [49]
    B.C. van Rees, Holographic renormalization for irrelevant operators and multi-trace counterterms, JHEP 08 (2011) 093 [arXiv:1102.2239] [INSPIRE].CrossRefGoogle Scholar
  50. [50]
    A.O. Starinets, Quasinormal modes of near extremal black branes, Phys. Rev. D 66 (2002) 124013 [hep-th/0207133] [INSPIRE].MathSciNetADSGoogle Scholar
  51. [51]
    S. Musiri and G. Siopsis, Asymptotic form of quasinormal modes of large AdS black holes, Phys. Lett. B 576 (2003) 309 [hep-th/0308196] [INSPIRE].MathSciNetADSGoogle Scholar
  52. [52]
    A. Karch, A. O’Bannon and K. Skenderis, Holographic renormalization of probe D-branes in AdS/CFT, JHEP 04 (2006) 015 [hep-th/0512125] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    S.K. Domokos and J.A. Harvey, Baryon number-induced Chern-Simons couplings of vector and axial-vector mesons in holographic QCD, Phys. Rev. Lett. 99 (2007) 141602 [arXiv:0704.1604] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S. Nakamura, H. Ooguri and C.-S. Park, Gravity Dual of Spatially Modulated Phase, Phys. Rev. D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].ADSGoogle Scholar
  55. [55]
    A. Karch, A. O’Bannon and E. Thompson, The Stress-Energy Tensor of Flavor Fields from AdS/CFT, JHEP 04 (2009) 021 [arXiv:0812.3629] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Francesco Bigazzi
    • 1
  • Aldo L. Cotrone
    • 2
    • 3
  • Javier Tarrío
    • 4
  1. 1.I.N.F.N. - Sezione di PisaPisaItaly
  2. 2.Centro Studi e Ricerche E. FermiRomaItaly
  3. 3.Dipartimento di Fisica TeoricaUniversità di Torino and I.N.F.N. - sezione di TorinoTorinoItaly
  4. 4.Departament de Física Fonamental and Institut de Ciències del CosmosUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations