Advertisement

Rare B decays in the \( \mathcal{F} - {\text{SU}}\left( {5} \right) \) model

  • Tianjun Li
  • Dimitri V. Nanopoulos
  • Wenyu Wang
  • Xiao-Chuan Wang
  • Zhao-Hua Xiong
Article

Abstract

In the testable Flipped SU(5) × U(1) X model with TeV-scale vector-like particles from F-theory model building dubbed as the \( \mathcal{F} - {\text{SU}}\left( {5} \right) \) model, we study the vector-like quark contributions to B physics processes, including the quark mass spectra, Feynman rules, new operators and Wilson coefficients, etc. We focus on the implications of the vector-like quark mass scale on B physics. We find that there exists the \( \overline s bZ \) interaction at tree level, and the Yukawa interactions are changed. Interestingly, different from many previous models, the effects of vector-like quarks on rare B decays such as BX s γ and BX s + do not decouple in some viable parameter space, especially when the vector-like quark masses are comparable to the charged Higgs boson mass. Under the constraints from BX s γ and BX s + , the latest measurement for B s μ + μ can be explained naturally, and the branching ratio of B s + γ can be up to (4 ~ 5) × 10−8. The non-decoupling effects are much more predictable and thus the \( \mathcal{F} - {\text{SU}}\left( {5} \right) \) model may be tested in the near future experiments.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    J.R. Ellis, S. Kelley and D.V. Nanopoulos, Probing the desert using gauge coupling unification, Phys. Lett. B 260 (1991) 131 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    P. Langacker and M.-X. Luo, Implications of precision electroweak experiments for M t , ρ 0 , sin2 θ W and grand unification, Phys. Rev. D 44 (1991) 817 [INSPIRE].ADSGoogle Scholar
  3. [3]
    U. Amaldi, W. de Boer and H. Furstenau, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP, Phys. Lett. B 260 (1991) 447 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    F. Anselmo, L. Cifarelli, A. Peterman and A. Zichichi, The effective experimental constraints on M susy and M gut, Nuovo Cim. A 104 (1991) 1817 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    F. Anselmo, L. Cifarelli, A. Peterman and A. Zichichi, The convergence of the gauge couplings at E GUT and above: consequences for α 3(M Z) and SUSY breaking, Nuovo Cim. A 105 (1992) 1025 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric relics from the big bang, Nucl. Phys. B 238 (1984) 453 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    H. Goldberg, Constraint on the photino mass from cosmology, Phys. Rev. Lett. 50 (1983) 1419 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S.M. Barr, A new symmetry breaking pattern for SO(10) and proton decay, Phys. Lett. B 112 (1982) 219 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    J.P. Derendinger, J.E. Kim and D.V. Nanopoulos, Anti-SU(5), Phys. Lett. B 139 (1984) 170 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    I. Antoniadis, J.R. Ellis, J.S. Hagelin and D.V. Nanopoulos, Supersymmetric flipped SU(5) revitalized, Phys. Lett. B 194 (1987) 231 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J. Jiang, T. Li and D.V. Nanopoulos, Testable flipped SU(5) × U(1)X models, Nucl. Phys. B 772 (2007) 49 [hep-ph/0610054] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    I. Antoniadis, J.R. Ellis, J.S. Hagelin and D.V. Nanopoulos, An improved SU(5) × U(1) model from four-dimensional string, Phys. Lett. B 208 (1988) 209 [Addendum ibid. B 213 (1988) 562] [INSPIRE].
  13. [13]
    I. Antoniadis, J.R. Ellis, J.S. Hagelin and D.V. Nanopoulos, The flipped SU(5) × U(1) string model revamped, Phys. Lett. B 231 (1989) 65 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    J.L. Lopez, D.V. Nanopoulos and K.-J. Yuan, The search for a realistic flipped SU(5) string model, Nucl. Phys. B 399 (1993) 654 [hep-th/9203025] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory. I, JHEP 01 (2009) 058 [arXiv:0802.3391] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory. II: Experimental predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    R. Donagi and M. Wijnholt, Model building with F-theory, arXiv:0802.2969 [INSPIRE].
  18. [18]
    R. Donagi and M. Wijnholt, Breaking GUT groups in F-theory, arXiv:0808.2223 [INSPIRE].
  19. [19]
    J. Jiang, T. Li, D.V. Nanopoulos and D. Xie, F-SU(5), Phys. Lett. B 677 (2009) 322 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    J. Jiang, T. Li, D.V. Nanopoulos and D. Xie, Flipped SU(5) × U(1)X models from F-theory, Nucl. Phys. B 830 (2010) 195 [arXiv:0905.3394] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    K. Nakamura, Hyper-Kamiokande: a next generation water Cherenkov detector, Int. J. Mod. Phys. A 18 (2003) 4053 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S. Raby et al., DUSEL theory white paper, arXiv:0810.4551 [INSPIRE].
  23. [23]
    T. Li, D.V. Nanopoulos and J.W. Walker, Fast proton decay, Phys. Lett. B 693 (2010) 580 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    T. Li, D.V. Nanopoulos and J.W. Walker, Elements of F-ast proton decay, Nucl. Phys. B 846 (2011) 43 [arXiv:1003.2570] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    B. Kyae and Q. Shafi, Flipped SU(5) predicts δT/T , Phys. Lett. B 635 (2006) 247 [hep-ph/0510105] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    Y. Huo, T. Li, D.V. Nanopoulos and C. Tong, The lightest CP-even Higgs boson mass in the testable flipped SU(5) × U(1)X models from F-theory, Phys. Rev. D 85 (2012) 116002 [arXiv:1109.2329] [INSPIRE].ADSGoogle Scholar
  27. [27]
    T. Li, J.A. Maxin, D.V. Nanopoulos and J.W. Walker, A Higgs mass shift to 125 GeV and a multi-jet supersymmetry signal: miracle of the flippons at the \( \sqrt {\text{s}} = {\text{7TeV}} \) LHC, Phys. Lett. B 710 (2012) 207 [arXiv:1112.3024] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    E. Cremmer, S. Ferrara, C. Kounnas and D.V. Nanopoulos, Naturally vanishing cosmological constant in N = 1 supergravity, Phys. Lett. B 133 (1983) 61 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    J.R. Ellis, A.B. Lahanas, D.V. Nanopoulos and K. Tamvakis, No-scale supersymmetric standard model, Phys. Lett. B 134 (1984) 429 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J.R. Ellis, C. Kounnas and D.V. Nanopoulos, Phenomenological SU(1, 1) supergravity, Nucl. Phys. B 241 (1984) 406 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J.R. Ellis, C. Kounnas and D.V. Nanopoulos, No scale supersymmetric guts, Nucl. Phys. B 247 (1984) 373 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A.B. Lahanas and D.V. Nanopoulos, The road to no scale supergravity, Phys. Rept. 145 (1987) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    T. Li, J.A. Maxin, D.V. Nanopoulos and J.W. Walker, The golden point of no-scale and no-parameter \( \mathcal{F} - {\text{SU}}\left( {5} \right) \), Phys. Rev. D 83 (2011) 056015 [arXiv:1007.5100] [INSPIRE].ADSGoogle Scholar
  34. [34]
    T. Li, J.A. Maxin, D.V. Nanopoulos and J.W. Walker, The golden strip of correlated top quark, gaugino and vectorlike mass in no-scale, no-parameter F-SU(5), Phys. Lett. B 699 (2011) 164 [arXiv:1009.2981] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    T. Li, J.A. Maxin, D.V. Nanopoulos and J.W. Walker, No-scale multiverse blueprints at the LHC, arXiv:1202.0509 [INSPIRE].
  36. [36]
    A. Soni, A.K. Alok, A. Giri, R. Mohanta and S. Nandi, SM with four generations: selected implications for rare B and K decays, Phys. Rev. D 82 (2010) 033009 [arXiv:1002.0595] [INSPIRE].ADSGoogle Scholar
  37. [37]
    A.J. Buras et al., Patterns of flavour violation in the presence of a fourth generation of quarks and leptons, JHEP 09 (2010) 106 [arXiv:1002.2126] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    O. Eberhardt, A. Lenz and J. Rohrwild, Less space for a new family of fermions, Phys. Rev. D 82 (2010) 095006 [arXiv:1005.3505] [INSPIRE].ADSGoogle Scholar
  39. [39]
    Z.-H. Xiong, Constraining vectorlike quark model from B radiative decays, High Energy Phys. Nucl. Phys. 30 (2006) 284 [INSPIRE].Google Scholar
  40. [40]
    A.J. Buras, M. Misiak, M. Münz and S. Pokorski, Theoretical uncertainties and phenomenological aspects of BX s γ decay, Nucl. Phys. B 424 (1994) 374 [hep-ph/9311345] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. Misiak et al., Estimate of \( B\left( {\overline B \to {{X}_s}\gamma } \right) \) at \( O\left( {\alpha_s^2} \right) \), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    T. Hurth, Present status of inclusive rare B decays, Rev. Mod. Phys. 75 (2003) 1159 [hep-ph/0212304] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    C. Bobeth, P. Gambino, M. Gorbahn and U. Haisch, Complete NNLO QCD analysis of \( \overline B \to {{X}_s}{{\ell }^{ + }}{{\ell }^{ - }} \) and higher order electroweak effects, JHEP 04 (2004) 071 [hep-ph/0312090] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A. Ghinculov, T. Hurth, G. Isidori and Y.P. Yao, The rare decay BX s + to NNLL precision for arbitrary dilepton invariant mass, Nucl. Phys. B 685 (2004) 351 [hep-ph/0312128] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    H.H. Asatryan, H.M. Asatrian, C. Greub and M. Walker, Calculation of two loop virtual corrections to bsℓ + in the standard model, Phys. Rev. D 65 (2002) 074004 [hep-ph/0109140] [INSPIRE].ADSGoogle Scholar
  46. [46]
    P.H. Chankowski and L. Slawianowska, \( B_{{d,s}}^0 \to {{\mu }^{ - }}{{\mu }^{ + }} \) decay in the MSSM, Phys. Rev. D 63 (2001) 054012 [hep-ph/0008046] [INSPIRE].ADSGoogle Scholar
  47. [47]
    P.L. Cho, M. Misiak and D. Wyler, K Lπ 0 e + e and bX s l + l decay in the MSSM, Phys. Rev. D 54 (1996) 3329 [hep-ph/9601360] [INSPIRE].ADSGoogle Scholar
  48. [48]
    Y. Grossman, Z. Ligeti and E. Nardi, Bτ + τ (X) decays: first constraints and phenomenological implications, Phys. Rev. D 55 (1997) 2768 [hep-ph/9607473] [INSPIRE].ADSGoogle Scholar
  49. [49]
    J.L. Hewett and J.D. Wells, Searching for supersymmetry in rare B decays, Phys. Rev. D 55 (1997) 5549 [hep-ph/9610323] [INSPIRE].ADSGoogle Scholar
  50. [50]
    S. Bertolini, F. Borzumati, A. Masiero and G. Ridolfi, Effects of supergravity induced electroweak breaking on rare B decays and mixings, Nucl. Phys. B 353 (1991) 591 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A.J. Buras and M. Münz, Effective Hamiltonian for BX s e + e beyond leading logarithms in the NDR and HV schemes, Phys. Rev. D 52 (1995) 186 [hep-ph/9501281] [INSPIRE].ADSGoogle Scholar
  52. [52]
    M. Ciuchini, G. Degrassi, P. Gambino and G.F. Giudice, Next-to-leading QCD corrections to BX s γ: standard model and two Higgs doublet model, Nucl. Phys. B 527(1998) 21 [hep-ph/9710335] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    C.-S. Huang, W. Liao and Q.-S. Yan, The promising process to distinguish supersymmetric models with large tan β from the standard model: BX s μ + μ , Phys. Rev. D 59 (1999) 011701 [hep-ph/9803460] [INSPIRE].ADSGoogle Scholar
  54. [54]
    C.-S. Huang and S.-H. Zhu, BX s τ + τ in a CP spontaneously broken two Higgs doublet model, Phys. Rev. D 61 (2000) 015011 [Erratum ibid. D 61 (2000) 119903] [hep-ph/9905463] [INSPIRE].
  55. [55]
    C.-S. Huang, W. Liao, Q.-S. Yan and S.-H. Zhu, B sl + l in a type-II two-Higgs-doublet model and the minimal supersymmetric standard model, Phys. Rev. D 63 (2001) 114021 [Erratum ibid. D 64 (2001) 059902] [hep-ph/0006250] [INSPIRE].
  56. [56]
    C.-S. Huang, W. Liao, Q.-S. Yan and S.-H. Zhu, Rare decay BX s + in a CP spontaneously broken two Higgs doublet model, Eur. Phys. J. C 25 (2002) 103 [hep-ph/0110147] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    S.R. Choudhury and N. Gaur, Dileptonic decay of B s meson in SUSY models with large tan β, Phys. Lett. B 451 (1999) 86 [hep-ph/9810307] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    B. Grinstein, R.P. Springer and M.B. Wise, Effective Hamiltonian for weak radiative B meson decay, Phys. Lett. B 202 (1988) 138 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    B. Grinstein, R.P. Springer and M.B. Wise, Strong interaction effects in weak radiative B meson decay, Nucl. Phys. B 339 (1990) 269 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    Y.-B. Dai, C.-S. Huang and H.-W. Huang, BX s τ + τ in a two Higgs doublet model, Phys. Lett. B 390 (1997) 257 [Erratum ibid. B 513 (2001) 429] [hep-ph/9607389] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    J.L. Hewett, Tau polarization asymmetry in BX s τ + τ , Phys. Rev. D 53 (1996) 4964 [hep-ph/9506289] [INSPIRE].ADSGoogle Scholar
  62. [62]
    H.E. Logan and U. Nierste, B s,d → ℓ + in a two Higgs doublet model, Nucl. Phys. B 586 (2000) 39 [hep-ph/0004139] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    C. Bobeth, T. Ewerth, F. Krüger and J. Urban, Analysis of neutral Higgs boson contributions to the decays B s + and B → Kℓ + , Phys. Rev. D 64 (2001) 074014 [hep-ph/0104284] [INSPIRE].ADSGoogle Scholar
  64. [64]
    G. Erkol and G. Turan, Bτ + τ γ decay in the general two Higgs doublet model including the neutral Higgs boson effects, Phys. Rev. D 65 (2002) 094029 [hep-ph/0110017] [INSPIRE].ADSGoogle Scholar
  65. [65]
    G.K. Yeghiyan, Os) corrections to BX s e + e decay in the 2HDM, Mod. Phys. Lett. A 16 (2001) 2151 [hep-ph/0108151] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    A. Diaz Rodolfo, R. Martinez and J.A. Rodriguez, Bounds for lepton flavor violation using g − 2 muon factor in the two Higgs doublet model type 3, Phys. Rev. D 64(2001) 033004 [hep-ph/0010339] [INSPIRE].ADSGoogle Scholar
  67. [67]
    R. Diaz, R. Martinez and J.A. Rodriguez, Lepton flavor violation in the two Higgs doublet model type-III, Phys. Rev. D 63 (2001) 095007 [hep-ph/0010149] [INSPIRE].ADSGoogle Scholar
  68. [68]
    S. Davidson and H.E. Haber, Basis-independent methods for the two-Higgs-doublet model, Phys. Rev. D 72 (2005) 035004 [Erratum ibid. D 72 (2005) 099902] [hep-ph/0504050] [INSPIRE].
  69. [69]
    L. Wolfenstein and Y.L. Wu, CP violation in the decay bsγ in the two Higgs doublet model, Phys. Rev. Lett. 73 (1994) 2809 [hep-ph/9410253] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    T.M. Aliev and M. Savci, The BX d + decay in general two Higgs doublet model, Phys. Lett. B 452 (1999) 318 [hep-ph/9902208] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and τ -lepton properties, arXiv:1010.1589 [INSPIRE] and updates available at http://www.slac.stanford.edu/xorg/hfag/.
  72. [72]
    CMS collaboration, S. Chatrchyan et al., Search for B sμ + μ and B 0μ + μ decays, JHEP 04 (2012) 033 [arXiv:1203.3976] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    Z. Heng, R.J. Oakes, W. Wang, Z. Xiong and J.M. Yang, B meson dileptonic decays in the next-to-minimal supersymmetric model with a light CP-odd Higgs boson, Phys. Rev. D 77 (2008) 095012 [arXiv:0801.1169] [INSPIRE].ADSGoogle Scholar
  74. [74]
    Z. Xiong and J.M. Yang, B meson dileptonic decays enhanced by supersymmetry with large tan β, Nucl. Phys. B 628 (2002) 193 [hep-ph/0105260] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    G. Buchalla and A.J. Buras, QCD corrections to rare K and B decays for arbitrary top quark mass, Nucl. Phys. B 400 (1993) 225 [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    D.-S. Du, C. Liu and D.-X. Zhang, The rare decay B + τ in heavy meson chiral perturbation theory, Phys. Lett. B 317 (1993) 179 [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    K. de Bruyn et al., A new window for new physics in B sμ + μ , arXiv:1204.1737 [INSPIRE].
  78. [78]
    G. Eilam, I.E. Halperin and R.R. Mendel, Radiative decay Blνγ in the light cone QCD approach, Phys. Lett. B 361 (1995) 137 [hep-ph/9506264] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    LHCb collaboration, R. Aaij et al., Measurement of the effective B sK + K lifetime, Phys. Lett. B 707 (2012) 349 [arXiv:1111.0521] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    LHCb collaboration, R. Aaij et al., Search for the rare decays B sμμ and B dμμ, Phys. Lett. B 699 (2011) 330 [arXiv:1103.2465] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    LHCb collaboration, R. Aaij et al., Strong constraints on the rare decays B sμ + μ and B 0μ + μ , Phys. Rev. Lett. 108 (2012) 231801 [arXiv:1203.4493] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    CDF collaboration, T. Aaltonen et al., Search for B sμ + μ and B dμ + μ decays with CDF II, Phys. Rev. Lett. 107 (2011) 191801 [Phys. Rev. Lett. 107 (2011) 239903] [arXiv:1107.2304] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    LHCb collaboration, M. Palutan, Rare decay results and prospects with LHCb, talk given at the 13th International Conference on B-Physics at Hadron Machines, Amsterdam Netherlands, 4-8 Apr 2011 [PoS(BEAUTY 2011)042] [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Tianjun Li
    • 1
    • 2
  • Dimitri V. Nanopoulos
    • 2
    • 3
    • 4
  • Wenyu Wang
    • 5
  • Xiao-Chuan Wang
    • 5
  • Zhao-Hua Xiong
    • 5
  1. 1.State Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingP.R. China
  2. 2.George P. and Cynthia W. Mitchell Institute for Fundamental Physics and AstronomyTexas A&M UniversityCollege StationU.S.A.
  3. 3.Astroparticle Physics Group, Houston Advanced Research Center (HARC)WoodlandsU.S.A.
  4. 4.Academy of Athens, Division of Natural SciencesAthensGreece
  5. 5.Institute of Theoretical PhysicsBeijing University of TechnologyBeijingP.R. China

Personalised recommendations