Advertisement

A note on amplitudes in \( \mathcal{N} = {6} \) superconformal Chern-Simons theory

  • Andreas Brandhuber
  • Gabriele Travaglini
  • Congkao Wen
Article

Abstract

We establish a connection between tree-level superamplitudes in ABJM theory and leading singularities associated to special three-particle cuts of one-loop superamplitudes where one of the tree amplitudes entering the cut is a four-point amplitude. Using these relations, we show that certain intriguing similarities between one-loop and treelevel superamplitudes observed recently become completely manifest. This connection is reminiscent of a similar relation in the maximally supersymmetric gauge theory in four dimensions, where the sum of two-mass hard and one-mass box coefficients of a one-loop amplitude equals the corresponding tree-level amplitude. As an application, we present a very simple re-derivation of the six-point superamplitude and calculate the eight-point superamplitude at one loop in ABJM theory.

Keywords

Supersymmetric gauge theory Extended Supersymmetry Scattering Amplitudes Chern-Simons Theories 

References

  1. [1]
    J.H. Schwarz, Superconformal Chern-Simons theories, JHEP 11 (2004) 078 [hep-th/0411077] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    G. Arutyunov and S. Frolov, Superstrings on AdS 4 × CP 3 as a Coset σ-model, JHEP 09 (2008) 129 [arXiv:0806.4940] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    B. Stefanski Jr., Green-Schwarz action for Type IIA strings on AdS 4 × CP 3, Nucl. Phys. B 808 (2009) 80 [arXiv:0806.4948] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    D. Sorokin and L. Wulff, Evidence for the classical integrability of the complete AdS 4 × CP 3 superstring, JHEP 11 (2010) 143 [arXiv:1009.3498] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    J. Minahan and K. Zarembo, The Bethe ansatz for superconformal Chern-Simons, JHEP 09 (2008) 040 [arXiv:0806.3951] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    J. Minahan, W. Schulgin and K. Zarembo, Two loop integrability for Chern-Simons theories with N = 6 supersymmetry, JHEP 03 (2009) 057 [arXiv:0901.1142] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    N. Gromov and P. Vieira, The all loop AdS 4 /CF T 3 Bethe ansatz, JHEP 01 (2009) 016 [arXiv:0807.0777] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    N. Gromov and P. Vieira, The AdS 4 /CF T 3 algebraic curve, JHEP 02 (2009) 040 [arXiv:0807.0437] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    C. Ahn and R.I. Nepomechie, N = 6 super Chern-Simons theory S-matrix and all-loop Bethe ansatz equations, JHEP 09 (2008) 010 [arXiv:0807.1924] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    T. McLoughlin and R. Roiban, Spinning strings at one-loop in AdS 4 × P 3, JHEP 12 (2008) 101 [arXiv:0807.3965] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    L.F. Alday, G. Arutyunov and D. Bykov, Semiclassical quantization of spinning strings in AdS 4 × CP 3, JHEP 11 (2008) 089 [arXiv:0807.4400] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    C. Krishnan, AdS 4 /CF T 3 at one loop, JHEP 09 (2008) 092 [arXiv:0807.4561] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    T. McLoughlin, R. Roiban and A.A. Tseytlin, Quantum spinning strings in AdS 4 × CP 3 : testing the Bethe Ansatz proposal, JHEP 11 (2008) 069 [arXiv:0809.4038] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    D. Gaiotto, S. Giombi and X. Yin, Spin chains in N = 6 superconformal Chern-Simons-Matter theory, JHEP 04 (2009) 066 [arXiv:0806.4589] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    T. Nishioka and T. Takayanagi, On type IIA Penrose limit and N = 6 Chern-Simons theories, JHEP 08 (2008) 001 [arXiv:0806.3391] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    A. Agarwal, N. Beisert and T. McLoughlin, Scattering in mass-deformed N ≥ 4 Chern-Simons models, JHEP 06 (2009) 045 [arXiv:0812.3367] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    T. Bargheer, F. Loebbert and C. Meneghelli, Symmetries of Tree-level Scattering Amplitudes in N = 6 Superconformal Chern-Simons Theory, Phys. Rev. D 82 (2010) 045016 [arXiv:1003.6120] [INSPIRE].ADSGoogle Scholar
  21. [21]
    Y.-t. Huang and A.E. Lipstein, Dual superconformal symmetry of N = 6 Chern-Simons theory, JHEP 11 (2010) 076 [arXiv:1008.0041] [INSPIRE].Google Scholar
  22. [22]
    D. Gang, Y.-t. Huang, E. Koh, S. Lee and A.E. Lipstein, Tree-level recursion relation and dual superconformal symmetry of the ABJM theory, JHEP 03 (2011) 116 [arXiv:1012.5032] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    W.-M. Chen and Y.-t. Huang, Dualities for loop amplitudes of N = 6 Chern-Simons Matter theory, JHEP 11 (2011) 057 [arXiv:1107.2710] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    Y.-t. Huang, From Orthogonal Grassmanian to Three-algebra, seminar given at the workshop Recent Advances in Scattering Amplitudes, Newton Institute for Mathematical Sciences, Cambridge U.K., 4 April 2012, http://www.newton.ac.uk/programmes/BSM/seminars/040409001.html.
  25. [25]
    T. Bargheer, N. Beisert, F. Loebbert and T. McLoughlin, Conformal Anomaly for Amplitudes in N = 6 Superconformal Chern-Simons Theory, arXiv:1204.4406 [INSPIRE].
  26. [26]
    M.S. Bianchi, M. Leoni, A. Mauri, S. Penati and A. Santambrogio, One Loop Amplitudes In ABJM, JHEP 07 (2012) 029 [arXiv:1204.4407] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M.S. Bianchi, M. Leoni, A. Mauri, S. Penati and A. Santambrogio, Scattering amplitudes/Wilson loop duality in ABJM theory, JHEP 01 (2012) 056 [arXiv:1107.3139] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    M.S. Bianchi, M. Leoni and S. Penati, An all order identity between ABJM and N = 4 SYM four-point amplitudes, JHEP 04 (2012) 045 [arXiv:1112.3649] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    G. Korchemsky, J. Drummond and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].MathSciNetADSGoogle Scholar
  31. [31]
    A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    J.M. Henn, J. Plefka and K. Wiegandt, Light-like polygonal Wilson loops in 3d Chern-Simons and ABJM theory, JHEP 08 (2010) 032 [Erratum ibid. 1111 (2011) 053] [arXiv:1004.0226] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    M.S. Bianchi et al., From correlators to Wilson loops in Chern-Simons Matter theories, JHEP 06 (2011) 118 [arXiv:1103.3675] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    K. Wiegandt, Equivalence of Wilson loops in \( \mathcal{N} = {6} \) super Chern-Simons matter theory and \( \mathcal{N} = {4} \) SYM theory, Phys. Rev. D 84(2011) 126015 [arXiv:1110.1373][INSPIRE].ADSGoogle Scholar
  35. [35]
    P.A. Grassi, D. Sorokin and L. Wulff, Simplifying superstring and D-brane actions in AdS 4 × CP 3 superbackground, JHEP 08 (2009) 060 [arXiv:0903.5407] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    I. Adam, A. Dekel and Y. Oz, On integrable backgrounds self-dual under fermionic T-duality, JHEP 04 (2009) 120 [arXiv:0902.3805] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    I. Adam, A. Dekel and Y. Oz, On the fermionic T-duality of the AdS 4 × CP 3 σ-model, JHEP 10 (2010) 110 [arXiv:1008.0649] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    I. Adam, A. Dekel and Y. Oz, On the fermionic T-duality of the AdS 4 × CP 3 σ-model, JHEP 10 (2010) 110 [arXiv:1008.0649] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    A. Dekel and Y. Oz, Self-duality of Green-Schwarz σ-models, JHEP 03 (2011) 117 [arXiv:1101.0400] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    I. Bakhmatov, On AdS 4 × CP 3T-duality, Nucl. Phys. B 847 (2011) 38 [arXiv:1011.0985] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    I. Bakhmatov, E.O. Colgain and H. Yavartanoo, Fermionic T-duality in the pp-wave limit, JHEP 10 (2011) 085 [arXiv:1109.1052] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    E.O. Colgain, Self-duality of the D1 − D5 near-horizon, JHEP 04 (2012) 047 [arXiv:1202.3416] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in N =4 super Yang-Mills theory, JHEP 05(2009) 046 [arXiv:0902.2987] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    S. Lee, Yangian Invariant Scattering Amplitudes in Supersymmetric Chern-Simons Theory, Phys. Rev. Lett. 105 (2010) 151603 [arXiv:1007.4772] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    R. Roiban, M. Spradlin and A. Volovich, Dissolving N = 4 loop amplitudes into QCD tree amplitudes, Phys. Rev. Lett. 94 (2005) 102002 [hep-th/0412265] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    A. Brandhuber, P. Heslop and G. Travaglini, One-loop amplitudes in N = 4 super Yang-Mills and anomalous dual conformal symmetry, JHEP 08 (2009) 095 [arXiv:0905.4377] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    A. Brandhuber, P. Heslop and G. Travaglini, Proof of the dual conformal anomaly of one-loop amplitudes in N = 4 SYM, JHEP 10 (2009) 063 [arXiv:0906.3552] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    F. Cachazo, Sharpening The Leading Singularity, arXiv:0803.1988 [INSPIRE].
  54. [54]
    A. Brandhuber, P. Heslop and G. Travaglini, A note on dual superconformal symmetry of the N =4 super Yang-Mills S-matrix,Phys. Rev. D 78(2008) 125005 [arXiv:0807.4097] [INSPIRE].MathSciNetADSGoogle Scholar
  55. [55]
    T. Bargheer, N. Beisert, W. Galleas, F. Loebbert and T. McLoughlin, Exacting N = 4 superconformal symmetry, JHEP 11 (2009) 056 [arXiv:0905.3738] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    N. Beisert, J. Henn, T. McLoughlin and J. Plefka, One-loop superconformal and Yangian symmetries of scattering amplitudes in N = 4 super Yang-Mills, JHEP 04 (2010) 085 [arXiv:1002.1733] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    D. Kazakov, The method of uniqueness, a new powerful technique for multiloop calculations, Phys. Lett. B 133 (1983) 406 [INSPIRE].ADSGoogle Scholar
  58. [58]
    J. Gracey, On the evaluation of massless Feynman diagrams by the method of uniqueness, Phys. Lett. B 277 (1992) 469 [INSPIRE].MathSciNetADSGoogle Scholar
  59. [59]
    A.I. Davydychev and J. Tausk, A magic connection between massive and massless diagrams, Phys. Rev. D 53 (1996) 7381 [hep-ph/9504431] [INSPIRE].ADSGoogle Scholar
  60. [60]
    M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys. Commun. 175 (2006) 559 [hep-ph/0511200] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  61. [61]
    Z. Bern, L.J. Dixon and D.A. Kosower, One loop amplitudes for e + e to four partons, Nucl. Phys. B 513 (1998) 3 [hep-ph/9708239] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Andreas Brandhuber
    • 1
    • 2
  • Gabriele Travaglini
    • 1
  • Congkao Wen
    • 1
  1. 1.Centre for Research in String Theory, School of Physics and AstronomyQueen Mary University of LondonLondonUnited Kingdom
  2. 2.Department of Particle Physics and AstrophysicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations