Decoupling constant for α s and the effective gluon-Higgs coupling to three loops in supersymmetric QCD

  • Alexander Kurz
  • Matthias Steinhauser
  • Nikolai Zerf


We compute the three-loop QCD corrections to the decoupling constant for α s which relates the Minimal Supersymmetric Standard Model to Quantum Chromodynamics with five or six active flavours. The new results can be used to study the stability of α s evaluated at a high scale from the knowledge of its value at M Z. We furthermore derive a low-energy theorem which allows the calculation of the coefficient function of the effective Higgs boson-gluon operator from the decoupling constant. This constitutes the first independent check of the matching coefficient to three loops.


Supersymmetry Phenomenology QCD Phenomenology 


  1. [1]
    S. Weinberg, Effective Gauge Theories, Phys. Lett. B 91 (1980) 51 [INSPIRE].ADSGoogle Scholar
  2. [2]
    W. Bernreuther and W. Wetzel, Decoupling of Heavy Quarks in the Minimal Subtraction Scheme, Nucl. Phys. B 197 (1982) 228 [Erratum ibid. B 513 (1998) 758] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S. Larin, T. van Ritbergen and J. Vermaseren, The Large quark mass expansion of Γ(Z 0hadrons) and Γ(τ ν τ + hadrons) in the order \(\alpha_{^S}^3\), Nucl. Phys. B 438 (1995) 278 [hep-ph/9411260] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    K. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to \(O\left( {\alpha_{^{\text{s}}}^3} \right)\) and their connection to low-energy theorems, Nucl. Phys. B 510 (1998) 61 [hep-ph/9708255] [INSPIRE].ADSGoogle Scholar
  5. [5]
    Y. Schröder and M. Steinhauser, Four-loop decoupling relations for the strong coupling, JHEP 01 (2006) 051 [hep-ph/0512058] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    K. Chetyrkin, J.H. Kuhn and C. Sturm, QCD decoupling at four loops, Nucl. Phys. B 744 (2006) 121 [hep-ph/0512060] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A.G. Grozin, M. Hoeschele, J. Hoff and M. Steinhauser, Simultaneous decoupling of bottom and charm quarks, JHEP 09 (2011) 066 [arXiv:1107.5970] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R. Harlander, L. Mihaila and M. Steinhauser, Two-loop matching coefficients for the strong coupling in the MSSM, Phys. Rev. D 72 (2005) 095009 [hep-ph/0509048] [INSPIRE].ADSGoogle Scholar
  9. [9]
    R. Harlander, L. Mihaila and M. Steinhauser, Running of α s and m b in the MSSM, Phys. Rev. D 76 (2007) 055002 [arXiv:0706.2953] [INSPIRE].ADSGoogle Scholar
  10. [10]
    A. Bauer, L. Mihaila and J. Salomon, Matching coefficients for α s and m b to \(O\left( {\alpha_{^{\text{s}}}^2} \right)\) in the MSSM, JHEP 02 (2009) 037 [arXiv:0810.5101] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A Phenomenological Profile of the Higgs Boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].ADSGoogle Scholar
  12. [12]
    M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-Energy Theorems for Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys. 30 (1979) 711 [INSPIRE].Google Scholar
  13. [13]
    B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys. C 69 (1995) 77 [hep-ph/9505225] [INSPIRE].Google Scholar
  14. [14]
    G. Degrassi and P. Slavich, On the NLO QCD corrections to Higgs production and decay in the MSSM, Nucl. Phys. B 805 (2008) 267 [arXiv:0806.1495] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    L. Mihaila and C. Reisser, \(O\left( {\alpha_{^{\text{s}}}^2} \right)\) corrections to fermionic Higgs decays in the MSSM, JHEP 08 (2010) 021 [arXiv:1007.0693] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    R.V. Harlander and M. Steinhauser, Supersymmetric Higgs production in gluon fusion at next-to-leading order, JHEP 09 (2004) 066 [hep-ph/0409010] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Pak, M. Steinhauser and N. Zerf, Towards Higgs boson production in gluon fusion to NNLO in the MSSM, Eur. Phys. J. C 71 (2011) 1602 [arXiv:1012.0639] [INSPIRE].ADSGoogle Scholar
  18. [18]
    A. Pak, M. Steinhauser and N. Zerf, Supersymmetric next-to-next-to-leading order corrections to Higgs boson production in gluon fusion, in preparation.Google Scholar
  19. [19]
    R.V. Harlander, L. Mihaila and M. Steinhauser, The SUSY-QCD β-function to three loops, Eur. Phys. J. C 63 (2009) 383 [arXiv:0905.4807] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Bednyakov, Running mass of the b-quark in QCD and SUSY QCD, Int. J. Mod. Phys. A 22 (2007) 5245 [arXiv:0707.0650] [INSPIRE].ADSGoogle Scholar
  21. [21]
    T. Hermann, L. Mihaila and M. Steinhauser, Three-loop anomalous dimensions for squarks in supersymmetric QCD, Phys. Lett. B 703 (2011) 51 [arXiv:1106.1060] [INSPIRE].ADSGoogle Scholar
  22. [22]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  23. [23]
    J. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  24. [24]
    V.A. Smirnov, Applied Asymptotic Expansions in Momenta and Masses, Springer Tracts in Modern Physics 177 (2002).Google Scholar
  25. [25]
    R. Harlander, T. Seidensticker and M. Steinhauser, Complete corrections of Order αα s to the decay of the Z boson into bottom quarks, Phys. Lett. B 426 (1998) 125 [hep-ph/9712228] [INSPIRE].ADSGoogle Scholar
  26. [26]
    T. Seidensticker, Automatic application of successive asymptotic expansions of Feynman diagrams, hep-ph/9905298 [INSPIRE].
  27. [27]
    M. Steinhauser, MATAD: A Program package for the computation of MAssive TADpoles, Comput. Phys. Commun. 134 (2001) 335 [hep-ph/0009029] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  28. [28]
  29. [29]
    S.P. Martin, A Supersymmetry primer, hep-ph/9709356 [INSPIRE].
  30. [30]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  31. [31]
    B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  32. [32]
    J. Vermaseren, S. Larin and T. van Ritbergen, The four loop quark mass anomalous dimension and the invariant quark mass, Phys. Lett. B 405 (1997) 327 [hep-ph/9703284] [INSPIRE].ADSGoogle Scholar
  33. [33]
    M. Czakon, The Four-loop QCD β-function and anomalous dimensions, Nucl. Phys. B 710 (2005) 485 [hep-ph/0411261] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    I. Jack, D. Jones and C. North, N = 1 supersymmetry and the three loop gauge β-function, Phys. Lett. B 386 (1996) 138 [hep-ph/9606323] [INSPIRE].ADSGoogle Scholar
  35. [35]
    A. Pickering, J. Gracey and D. Jones, Three loop gauge β-function for the most general single gauge coupling theory, Phys. Lett. B 510 (2001) 347 [Erratum ibid. B 535 (2002) 377] [hep-ph/0104247] [INSPIRE].ADSGoogle Scholar
  36. [36]
    I. Jack, D. Jones and C. North, Scheme dependence and the NSVZ β-function, Nucl. Phys. B 486 (1997) 479 [hep-ph/9609325] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Alexander Kurz
    • 1
  • Matthias Steinhauser
    • 1
  • Nikolai Zerf
    • 1
  1. 1.Institut für Theoretische TeilchenphysikKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations