Invisible Higgs and dark matter

  • Matti Heikinheimo
  • Kimmo Tuominen
  • Jussi Virkajärvi


We investigate the possibility that a massive weakly interacting fermion simultaneously provides for a dominant component of the dark matter relic density and an invisible decay width of the Higgs boson at the LHC. As a concrete model realizing such dynamics we consider the minimal walking technicolor, although our results apply more generally. Taking into account the constraints from the electroweak precision measurements and current direct searches for dark matter particles, we find that such scenario is heavily constrained, and large portions of the parameter space are excluded.


Higgs Physics Beyond Standard Model Cosmology of Theories beyond the SM Technicolor and Composite Models 


  1. [1]
    ATLAS collaboration, G. Aad et al., Search for the Higgs boson in the HW Wlνjj decay channel in pp collisions at \( \sqrt {s} = 7 \) TeV with the ATLAS detector, Phys. Rev. Lett. 107 (2011) 231801 [arXiv:1109.3615] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    CMS collaboration, Search for the Higgs boson in the fully leptonic W + W final state, CMS-PAS-EXO-11-024 (2011).Google Scholar
  3. [3]
    ATLAS collaboration, G. Aad et al., Search for the standard model Higgs boson in the decay channel H to ZZ → 4l with 4.8 fb −1 of pp collision data at \( \sqrt {s} = 7 \) TeV with ATLAS, Phys. Lett. B 710 (2012) 383 [arXiv:1202.1415] [INSPIRE].ADSGoogle Scholar
  4. [4]
    CMS collaboration, Updated search for new physics in highly boosted Z 0 decays to dimuon in pp collisions at \( \sqrt {s} = 7 \) TeV, CMS-PAS-EXO-11-025 (2011).Google Scholar
  5. [5]
    C. Englert, T. Plehn, M. Rauch, D. Zerwas and P.M. Zerwas, LHC: standard Higgs and hidden Higgs, Phys. Lett. B 707 (2012) 512 [arXiv:1112.3007] [INSPIRE].ADSGoogle Scholar
  6. [6]
    M. Raidal and A. Strumia, Hints for a non-standard Higgs boson from the LHC, Phys. Rev. D 84 (2011) 077701 [arXiv:1108.4903] [INSPIRE].ADSGoogle Scholar
  7. [7]
    Y. Mambrini, Higgs searches and singlet scalar dark matter: combined constraints from XENON100 and the LHC, Phys. Rev. D 84 (2011) 115017 [arXiv:1108.0671] [INSPIRE].ADSGoogle Scholar
  8. [8]
    X.-G. He and J. Tandean, Hidden Higgs boson at the LHC and light dark matter searches, Phys. Rev. D 84 (2011) 075018 [arXiv:1109.1277] [INSPIRE].ADSGoogle Scholar
  9. [9]
    I. Low, P. Schwaller, G. Shaughnessy and C.E. Wagner, The dark side of the Higgs boson, Phys. Rev. D 85 (2012) 015009 [arXiv:1110.4405] [INSPIRE].ADSGoogle Scholar
  10. [10]
    S. Kanemura, S. Matsumoto, T. Nabeshima and N. Okada, Can WIMP dark matter overcome the nightmare scenario?, Phys. Rev. D 82 (2010) 055026 [arXiv:1005.5651] [INSPIRE].ADSGoogle Scholar
  11. [11]
    O. Lebedev, H.M. Lee and Y. Mambrini, Vector Higgs-portal dark matter and the invisible Higgs, Phys. Lett. B 707 (2012) 570 [arXiv:1111.4482] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].ADSGoogle Scholar
  13. [13]
    T. Hambye, Hidden vector dark matter, JHEP 01 (2009) 028 [a rXiv:0811.0172] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J. Hisano, K. Ishiwata, N. Nagata and M. Yamanaka, Direct detection of vector dark matter, Prog. Theor. Phys. 126 (2011) 435 [arXiv:1012.5455] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  15. [15]
    S.-W. Baek, P. Ko and W.-I. Park, Search for the Higgs portal to a singlet fermionic dark matter at the LHC, JHEP 02 (2012) 047 [arXiv:1112.1847] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter and a Standard Model like Higgs at 125 GeV, arXiv:1203.2064 [INSPIRE].
  17. [17]
    F. Sannino and K. Tuominen, Orientifold theory dynamics and symmetry breaking, Phys. Rev. D 71 (2005) 051901 [hep-ph/0405209] [INSPIRE].ADSGoogle Scholar
  18. [18]
    R.E. Shrock and M. Suzuki, Invisible decays of Higgs bosons, Phys. Lett. B 110 (1982) 250 [INSPIRE].ADSGoogle Scholar
  19. [19]
    K. Belotsky, D. Fargion, M. Khlopov, R. Konoplich and K. Shibaev, Invisible Higgs boson decay into massive neutrinos of fourth generation, Phys. Rev. D 68 (2003) 054027 [hep-ph/0210153] [INSPIRE].ADSGoogle Scholar
  20. [20]
    W.-Y. Keung and P. Schwaller, Long lived fourth generation and the Higgs, JHEP 06 (2011) 054 [arXiv:1103.3765] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Djouadi and A. Lenz, Sealing the fate of a fourth generation of fermions, arXiv:1204.1252 [INSPIRE].
  22. [22]
    K. Kainulainen, J. Virkajarvi and K. Tuominen, Superweakly interacting dark matter from the minimal walking technicolor, JCAP 02 (2010) 029 [arXiv:0912.2295] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    E. Witten, An SU(2) anomaly, Phys. Lett. B 117 (1982) 324 [INSPIRE].MathSciNetADSGoogle Scholar
  24. [24]
    D.D. Dietrich, F. Sannino and K. Tuominen, Light composite Higgs from higher representations versus electroweak precision measurements: Predictions for CERN LHC, Phys. Rev. D 72 (2005) 055001 [hep-ph/0505059] [INSPIRE].ADSGoogle Scholar
  25. [25]
    S. Davidson, B. Campbell and D.C. Bailey, Limits on particles of small electric charge, Phys. Rev. D 43 (1991) 2314 [INSPIRE].ADSGoogle Scholar
  26. [26]
    S. Davidson, S. Hannestad and G. Raffelt, Updated bounds on millicharged particles, JHEP 05 (2000) 003 [hep-ph/0001179] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Dubovsky, D. Gorbunov and G. Rubtsov, Narrowing the window for millicharged particles by CMB anisotropy, JETP Lett. 79 (2004) 1 [hep-ph/0311189] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    L. Chuzhoy and E.W. Kolb, Reopening the window on charged dark matter, JCAP 07 (2009) 014 [arXiv:0809.0436] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    D.K. Hong, S.D. Hsu and F. Sannino, Composite Higgs from higher representations, Phys. Lett. B 597 (2004) 89 [hep-ph/0406200] [INSPIRE].ADSGoogle Scholar
  30. [30]
    D.D. Dietrich, F. Sannino and K. Tuominen, Light composite Higgs and precision electroweak measurements on the Z resonance: an update, Phys. Rev. D 73 (2006) 037701 [hep-ph/0510217] [INSPIRE].ADSGoogle Scholar
  31. [31]
    T. Hapola, F. Mescia, M. Nardecchia and F. Sannino, Pseudo goldstone bosons phenomenology in minimal walking technicolor, arXiv:1202.3024 [INSPIRE].
  32. [32]
    C. Kouvaris, Dark Majorana particles from the minimal walking technicolor, Phys. Rev. D 76 (2007) 015011 [hep-ph/0703266] [INSPIRE].ADSGoogle Scholar
  33. [33]
    T. Hur and P. Ko, Scale invariant extension of the standard model with strongly interacting hidden sector, Phys. Rev. Lett. 106 (2011) 141802 [arXiv:1103.2571] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    T. Hur, D.-W. Jung, P. Ko and J.Y. Lee, Electroweak symmetry breaking and cold dark matter from strongly interacting hidden sector, Phys. Lett. B 696 (2011) 262 [arXiv:0709.1218] [INSPIRE].ADSGoogle Scholar
  35. [35]
    O. Antipin, M. Heikinheimo and K. Tuominen, The next generation, JHEP 07 (2010) 052 [arXiv:1002.1872] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. Knochel and C. Wetterich, Theoretical constraints on new generations with and without quarks or neutrinos, Phys. Lett. B 706 (2012) 320 [arXiv:1106.2609] [INSPIRE].ADSGoogle Scholar
  37. [37]
    C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [Erratum ibid. 390 (2004) 553-554] [hep-ph/0203079] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    T. Appelquist and R. Shrock, Neutrino masses in theories with dynamical electroweak symmetry breaking, Phys. Lett. B 548 (2002) 204 [hep-ph/0204141] [INSPIRE].ADSGoogle Scholar
  39. [39]
    T. Appelquist, N.D. Christensen, M. Piai and R. Shrock, Flavor-changing processes in extended technicolor, Phys. Rev. D 70 (2004) 093010 [hep-ph/0409035] [INSPIRE].ADSGoogle Scholar
  40. [40]
    R. Foadi, M.T. Frandsen, T.A. Ryttov and F. Sannino, Minimal walking technicolor: set up for collider physics, Phys. Rev. D 76 (2007) 055005 [arXiv:0706.1696] [INSPIRE].ADSGoogle Scholar
  41. [41]
    R. Foadi and F. Sannino, WW scattering in walking technicolor: no discovery scenarios at the CERN LHC and ILC, Phys. Rev. D 78 (2008) 037701 [arXiv:0801.0663] [INSPIRE].ADSGoogle Scholar
  42. [42]
    R. Foadi, M. Jarvinen and F. Sannino, Unitarity in technicolor, Phys. Rev. D 79 (2009) 035010 [arXiv:0811.3719] [INSPIRE].ADSGoogle Scholar
  43. [43]
    M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].ADSGoogle Scholar
  45. [45]
    O. Antipin, M. Heikinheimo and K. Tuominen, Natural fourth generation of leptons, JHEP 10 (2009) 018 [arXiv:0905.0622] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group collaboration, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].ADSGoogle Scholar
  47. [47]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  48. [48]
    B.W. Lee and S. Weinberg, Cosmological lower bound on heavy neutrino masses, Phys. Rev. Lett. 39 (1977) 165 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    K. Enqvist, K. Kainulainen and J. Maalampi, Singlet neutrinos in cosmology, Nucl. Phys. B 316 (1989) 456 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    Cosmological parameters from combined WMAP7+H0 data, reported by NASA in LAMBDA archive:
  52. [52]
    XENON collaboration, J. Angle et al., First results from the XENON10 dark matter experiment at the Gran Sasso National Laboratory, Phys. Rev. Lett. 100 (2008) 021303 [arXiv:0706.0039] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    J. Angleet al., Limits on spin-dependent WIMP-nucleon cross-sections from the XENON10 experiment, Phys. Rev. Lett. 101 (2008) 091301 [arXiv:0805.2939] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    CDMS collaboration, Z. Ahmed et al., Search for weakly interacting massive particles with the first five-tower data from the cryogenic dark matter search at the Soudan Underground Laboratory, Phys. Rev. Lett. 102 (2009) 011301 [arXiv:0802.3530] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    K. Belotsky, M. Khlopov and C. Kouvaris, Muon flux limits for Majorana dark matter from strong coupling theories, Phys. Rev. D 79 (2009) 083520 [arXiv:0810.2022] [INSPIRE].ADSGoogle Scholar
  56. [56]
    Super-Kamiokande collaboration, S. Desai et al., Search for dark matter WIMPs using upward through-going muons in Super-Kamiokande, Phys. Rev. D 70 (2004) 083523 [Erratum ibid. D 70 (2004) 109901] [hep-ex/0404025] [INSPIRE].ADSGoogle Scholar
  57. [57]
    IceCube collaboration, R. Abbasi et al., Limits on a muon flux from neutralino annihilations in the Sun with the IceCube 22-string detector, Phys. Rev. Lett. 102 (2009) 201302 [arXiv:0902.2460] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    IceCube collaboration, R. Abbasi et al., Multi-year search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors, Phys. Rev. D 85 (2012) 042002 [arXiv:1112.1840] [INSPIRE].ADSGoogle Scholar
  59. [59]
    Super-Kamiokande collaboration, T. Tanaka et al., An indirect search for WIMPs in the Sun using 3109.6 days of upward-going muons in Super-Kamiokande, Astrophys. J. 742 (2011) 78 [arXiv:1108.3384] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    M. Järvinen, C. Kouvaris, P. Panci and J. Virkajärvi, in progress.Google Scholar
  61. [61]
    XENON100 collaboration, E. Aprile et al., Dark matter results from 100 live days of XENON100 data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    J.R. Ellis, K.A. Olive and C. Savage, Hadronic uncertainties in the elastic scattering of supersymmetric dark matter, Phys. Rev. D 77 (2008) 065026 [arXiv:0801.3656] [INSPIRE].ADSGoogle Scholar
  63. [63]
    J. Alarcon, J. Martin Camalich and J. Oller, The chiral representation of the πN scattering amplitude and the pion-nucleon sigma term, Phys. Rev. D 85 (2012) 051503 [arXiv:1110.3797] [INSPIRE].ADSGoogle Scholar
  64. [64]
    QCDSF collaboration, G. Bali et al., A lattice study of the strangeness content of the nucleon, Prog. Part. Nucl. Phys. 67 (2012) 467 [arXiv:1112.0024] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    H.-Y. Cheng and C.-W. Chiang, Revisiting scalar and pseudoscalar couplings with nucleons, arXiv:1202.1292 [INSPIRE].
  66. [66]
    R.Gaitskell, V. Mandic and J. Filippini, SUSY dark matter/interactive direct detection limit plotter,
  67. [67]
    C. Englert, J. Jaeckel, E. Re and M. Spannowsky, Evasive Higgs maneuvers at the LHC, Phys. Rev. D 85 (2012) 035008 [arXiv:1111.1719] [INSPIRE].ADSGoogle Scholar
  68. [68]
    M.T. Frandsen, I. Masina and F. Sannino, Fourth lepton family is natural in technicolor, Phys. Rev. D 81 (2010) 035010 [arXiv:0905.1331] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Matti Heikinheimo
    • 1
  • Kimmo Tuominen
    • 2
    • 3
  • Jussi Virkajärvi
    • 4
  1. 1.Department of Physics and AstronomyYork UniversityTorontoCanada
  2. 2.Department of PhysicsUniversity of JyväskyläJyväskyläFinland
  3. 3.Helsinki Institute of PhysicsUniversity of HelsinkiHelsinkiFinland
  4. 4.CP3 OriginsOdense MDenmark

Personalised recommendations