Analytic approaches to anisotropic holographic superfluids

  • Pallab Basu
  • Jae-Hyuk Oh


We construct an analytic solution of the Einstein-SU(2)-Yang-Mills system as the holographic dual of an anisotropic superfluid near its critical point, up to leading corrections in both the inverse Yang-Mills coupling and a symmetry breaking order parameter. We have also calculated the ratio of shear viscosity to entropy density in this background, and shown that the universality of this ratio is lost in the broken symmetry direction. The ratio displays a scaling behavior near the critical point with critical exponent β = 1, at the leading order in the double expansion.


Gauge-gravity correspondence AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) 


  1. [1]
    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    R. Manvelyan, E. Radu and D. Tchrakian, New AdS non Abelian black holes with superconducting horizons, Phys. Lett. B 677 (2009) 79 [arXiv:0812.3531] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    C. Herzog and D. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP 03 (2003) 046 [hep-th/0212072] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    P. Kovtun, D. Son and A. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A. Buchel, On universality of stress-energy tensor correlation functions in supergravity, Phys. Lett. B 609 (2005) 392 [hep-th/0408095] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    P. Benincasa, A. Buchel and R. Naryshkin, The shear viscosity of gauge theory plasma with chemical potentials, Phys. Lett. B 645 (2007) 309 [hep-th/0610145] [INSPIRE].ADSGoogle Scholar
  7. [7]
    K. Fukushima, Critical surface in hot and dense QCD with the vector interaction, Phys. Rev. D 78 (2008) 114019 [arXiv:0809.3080] [INSPIRE].ADSGoogle Scholar
  8. [8]
    A. Buchel, Shear viscosity of CFT plasma at finite coupling, Phys. Lett. B 665 (2008) 298 [arXiv:0804.3161] [INSPIRE].ADSGoogle Scholar
  9. [9]
    A. Buchel, R.C. Myers and A. Sinha, Beyond η/s = 1/4π, JHEP 03 (2009) 084 [arXiv:0812.2521] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Sinha and R.C. Myers, The viscosity bound in string theory, Nucl. Phys. A 830 (2009) 295 C [arXiv:0907.4798] [INSPIRE].ADSGoogle Scholar
  11. [11]
    P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Hard-gapped holographic superconductors, Phys. Lett. B 689 (2010) 45 [arXiv:0911.4999] [INSPIRE].ADSGoogle Scholar
  12. [12]
    P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Superconductivity from D3/D7: holographic pion superfluid, JHEP 11 (2009) 070 [arXiv:0810.3970] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Ammon, J. Erdmenger, V. Grass, P. Kerner and A. O’Bannon, On holographic p-wave superfluids with back-reaction, Phys. Lett. B 686 (2010) 192 [arXiv:0912.3515] [INSPIRE].ADSGoogle Scholar
  14. [14]
    J. Erdmenger, P. Kerner and H. Zeller, Non-universal shear viscosity from Einstein gravity, Phys. Lett. B 699 (2011) 301 [arXiv:1011.5912] [INSPIRE].ADSGoogle Scholar
  15. [15]
    C.P. Herzog and S.S. Pufu, The second sound of SU(2), JHEP 04 (2009) 126 [arXiv:0902.0409] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    C.P. Herzog, N. Lisker, P. Surowka and A. Yarom, Transport in holographic superfluids, JHEP 08 (2011) 052 [arXiv:1101.3330] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Natsuume and M. Ohta, The shear viscosity of holographic superfluids, Prog. Theor. Phys. 124 (2010) 931 [arXiv:1008.4142] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  18. [18]
    J. Bhattacharya, S. Bhattacharyya, S. Minwalla and A. Yarom, A theory of first order dissipative superfluid dynamics, arXiv:1105.3733 [INSPIRE].
  19. [19]
    J. Bhattacharya, S. Bhattacharyya and S. Minwalla, Dissipative superfluid dynamics from gravity, JHEP 04 (2011) 125 [arXiv:1101.3332] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S.S. Gubser, Colorful horizons with charge in anti-de Sitter space, Phys. Rev. Lett. 101 (2008) 191601 [arXiv:0803.3483] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor, JHEP 11 (2008) 033 [arXiv:0805.2960] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    M.M. Roberts and S.A. Hartnoll, Pseudogap and time reversal breaking in a holographic superconductor, JHEP 08 (2008) 035 [arXiv:0805.3898] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    J. Erdmenger, P. Kerner and H. Zeller, Transport in anisotropic superfluids: a holographic description, JHEP 01 (2012) 059 [arXiv:1110.0007] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of KentuckyLexingtonU.S.A.
  2. 2.Department of Physics and Center for Quantum SpacetimeSogang UniversitySeoulSouth Korea
  3. 3.Harish-Chandra Research InstituteAllahabadIndia

Personalised recommendations