Extremal surfaces as bulk probes in AdS/CFT

  • Veronika E. Hubeny


Motivated by the need for further insight into the emergence of AdS bulk spacetime from CFT degrees of freedom, we explore the behaviour of probes represented by specific geometric quantities in the bulk. We focus on geodesics and n-dimensional extremal surfaces in a general static asymptotically AdS spacetime with spherical and planar symmetry, respectively. While our arguments do not rely on the details of the metric, we illustrate some of our findings explicitly in spacetimes of particular interest (specifically AdS, Schwarzschild-AdS and extreme Reissner-Nordstrom-AdS). In case of geodesics, we find that for a fixed spatial distance between the geodesic endpoints, spacelike geodesics at constant time can reach deepest into the bulk. We also present a simple argument for why, in the presence of a black hole, geodesics cannot probe past the horizon whilst anchored on the AdS boundary at both ends. The reach of an extremal n-dimensional surface anchored on a given region depends on its dimensionality, the shape and size of the bounding region, as well as the bulk metric. We argue that for a fixed extent or volume of the boundary region, spherical regions give rise to the deepest reach of the corresponding extremal surface. Moreover, for physically sensible spacetimes, at fixed extent of the boundary region, higher-dimensional surfaces reach deeper into the bulk. Finally, we show that in a static black hole spacetime, no extremal surface (of any dimensionality, anchored on any region in the boundary) can ever penetrate the horizon.


Gauge-gravity correspondence AdS-CFT Correspondence 


  1. [1]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  2. [2]
    T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [INSPIRE].
  3. [3]
    J. Polchinski, S matrices from AdS space-time, hep-th/9901076 [INSPIRE].
  4. [4]
    L. Susskind, Holography in the flat space limit, hep-th/9901079 [INSPIRE].
  5. [5]
    S.B. Giddings, Flat space scattering and bulk locality in the AdS/CFT correspondence, Phys. Rev. D 61 (2000) 106008 [hep-th/9907129] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    G.T. Horowitz and V.E. Hubeny, CFT description of small objects in AdS, JHEP 10 (2000) 027 [hep-th/0009051] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: A Boundary view of horizons and locality, Phys. Rev. D 73 (2006) 086003 [hep-th/0506118] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    M. Gary and S.B. Giddings, The Flat space S-matrix from the AdS/CFT correspondence?, Phys. Rev. D 80 (2009) 046008 [arXiv:0904.3544] [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    D. Kabat, G. Lifschytz and D.A. Lowe, Constructing local bulk observables in interacting AdS/CFT, Phys. Rev. D 83 (2011) 106009 [arXiv:1102.2910] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A.L. Fitzpatrick and J. Kaplan, Scattering States in AdS/CFT, arXiv:1104.2597 [INSPIRE].
  12. [12]
    I. Heemskerk, D. Marolf and J. Polchinski, Bulk and Transhorizon Measurements in AdS/CFT, arXiv:1201.3664 [INSPIRE].
  13. [13]
    V.E. Hubeny and M. Rangamani, A Holographic view on physics out of equilibrium, Adv. High Energy Phys. 2010 (2010) 297916 [arXiv:1006.3675] [INSPIRE].Google Scholar
  14. [14]
    L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker, The Black hole singularity in AdS/CFT, JHEP 02 (2004) 014 [hep-th/0306170] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    G. Festuccia and H. Liu, Excursions beyond the horizon: Black hole singularities in Yang-Mills theories. I., JHEP 04 (2006) 044 [hep-th/0506202] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev. D 61 (2000) 044007 [hep-th/9906226] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    J. Louko, D. Marolf and S.F. Ross, On geodesic propagators and black hole holography, Phys. Rev. D 62 (2000) 044041 [hep-th/0002111] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    P. Kraus, H. Ooguri and S. Shenker, Inside the horizon with AdS/CFT, Phys. Rev. D 67 (2003) 124022 [hep-th/0212277] [INSPIRE].MathSciNetADSGoogle Scholar
  19. [19]
    V. Balasubramanian et al., Typicality versus thermality: An Analytic distinction, Gen. Rel. Grav. 40 (2008) 1863 [hep-th/0701122] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  20. [20]
    S.D. Mathur, The Fuzzball proposal for black holes: An Elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  21. [21]
    K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept. 467 (2008) 117 [arXiv:0804.0552] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    B. Freivogel, V.E. Hubeny, A. Maloney, R.C. Myers, M. Rangamani and S. Shenker, Inflation in AdS/CFT, JHEP 03 (2006) 007 [hep-th/0510046] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    V.E. Hubeny, H. Liu and M. Rangamani, Bulk-cone singularities & signatures of horizon formation in AdS/CFT, JHEP 01 (2007) 009 [hep-th/0610041] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    S. Gao and R.M. Wald, Theorems on gravitational time delay and related issues, Class. Quant. Grav. 17 (2000) 4999 [gr-qc/0007021] [INSPIRE].
  25. [25]
    J. Erdmenger, C. Hoyos and S. Lin, Time Singularities of Correlators from Dirichlet Conditions in AdS/CFT, JHEP 03 (2012) 085 [arXiv:1112.1963] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    I. Amado and C. Hoyos-Badajoz, AdS black holes as reflecting cavities, JHEP 09 (2008) 118 [arXiv:0807.2337] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Erdmenger, S. Lin and T.H. Ngo, A Moving mirror in AdS space as a toy model for holographic thermalization, JHEP 04 (2011) 035 [arXiv:1101.5505] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J. Hammersley, Extracting the bulk metric from boundary information in asymptotically AdS spacetimes, JHEP 12 (2006) 047 [hep-th/0609202] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    S. Bilson, Extracting spacetimes using the AdS/CFT conjecture, JHEP 08 (2008) 073 [arXiv:0807.3695] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  31. [31]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    T. Nishioka, S. Ryu and T. Takayanagi, Holographic Entanglement Entropy: An Overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].MathSciNetGoogle Scholar
  33. [33]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    R. Bousso, A Covariant entropy conjecture, JHEP 07 (1999) 004 [hep-th/9905177] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic Evolution of Entanglement Entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J. Aparicio and E. Lopez, Evolution of Two-Point Functions from Holography, JHEP 12 (2011) 082 [arXiv:1109.3571] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    T. Albash and C.V. Johnson, Evolution of Holographic Entanglement Entropy after Thermal and Electromagnetic Quenches, New J. Phys. 13 (2011) 045017 [arXiv:1008.3027] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    V. Balasubramanian et al., Thermalization of Strongly Coupled Field Theories, Phys. Rev. Lett. 106 (2011) 191601 [arXiv:1012.4753] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    V. Balasubramanian et al., Holographic Thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].ADSGoogle Scholar
  43. [43]
    T. Albash and C.V. Johnson, Holographic Entanglement Entropy and Renormalization Group Flow, JHEP 02 (2012) 095 [arXiv:1110.1074] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    T. Albash and C.V. Johnson, Holographic Studies of Entanglement Entropy in Superconductors, JHEP 05 (2012) 079 [arXiv:1202.2605] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  46. [46]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    V.E. Hubeny, Precursors see inside black holes, Int. J. Mod. Phys. D 12 (2003) 1693 [hep-th/0208047] [INSPIRE].MathSciNetADSGoogle Scholar
  48. [48]
    R.C. Myers and A. Singh, Comments on Holographic Entanglement Entropy and RG Flows, JHEP 04 (2012) 122 [arXiv:1202.2068] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    H. Liu and M. Mezei, A Refinement of entanglement entropy and the number of degrees of freedom, arXiv:1202.2070 [INSPIRE].
  50. [50]
    V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  51. [51]
    V. Keranen, E. Keski-Vakkuri and L. Thorlacius, Thermalization and entanglement following a non-relativistic holographic quench, Phys. Rev. D 85 (2012) 026005 [arXiv:1110.5035] [INSPIRE].ADSGoogle Scholar
  52. [52]
    I. Booth, Black hole boundaries, Can. J. Phys. 83 (2005) 1073 [gr-qc/0508107] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    P. Figueras, V.E. Hubeny, M. Rangamani and S.F. Ross, Dynamical black holes and expanding plasmas, JHEP 04 (2009) 137 [arXiv:0902.4696] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Centre for Particle Theory & Department of Mathematical SciencesScience LaboratoriesDurhamUnited Kingdom

Personalised recommendations