Subtracted geometry from Harrison transformations

  • Amitabh Virmani


We consider the rotating non-extremal black hole of N=2 D=4 STU supergravity carrying three magnetic charges and one electric charge. We show that its subtracted geometry is obtained by applying a specific SO(4,4) Harrison transformation on the black hole. As previously noted, the resulting subtracted geometry is a solution of the N=2 S=T=U supergravity.


Black Holes in String Theory Black Holes 


  1. [1]
    A. Sen, Extremal black holes and elementary string states, Mod. Phys. Lett. A 10 (1995) 2081 [hep-th/9504147] [INSPIRE].ADSGoogle Scholar
  2. [2]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Cargese lectures on the Kerr/CFT correspondence, Nucl. Phys. Proc. Suppl. 216 (2011) 194 [arXiv:1103.2355] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    G. Compere, The Kerr/CFT correspondence and its extensions: a comprehensive review, arXiv:1203.3561 [INSPIRE].
  6. [6]
    A. Castro, A. Maloney and A. Strominger, Hidden conformal symmetry of the Kerr black hole, Phys. Rev. D 82 (2010) 024008 [arXiv:1004.0996] [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    S. Bertini, S.L. Cacciatori and D. Klemm, Conformal structure of the Schwarzschild black hole, Phys. Rev. D 85 (2012) 064018 [arXiv:1106.0999] [INSPIRE].ADSGoogle Scholar
  8. [8]
    M. Cvetič and F. Larsen, Conformal symmetry for general black holes, JHEP 02 (2012) 122 [arXiv:1106.3341] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M. Cvetič and F. Larsen, Conformal Symmetry for Black Holes in Four Dimensions, arXiv:1112.4846 [INSPIRE].
  10. [10]
    M. Cvetič and G. Gibbons, Conformal symmetry of a black hole as a scaling limit: a black hole in an asymptotically conical box, arXiv:1201.0601 [INSPIRE].
  11. [11]
    G. Compere, W. Song and A. Virmani, Microscopics of extremal Kerr from spinning M5 branes, JHEP 10 (2011) 087 [arXiv:1010.0685] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    M. Tanabe, The Kerr black hole and rotating black string by intersecting M-branes, arXiv:0804.3831 [INSPIRE].
  13. [13]
    Z.-W. Chong, M. Cvetič, H. Lü and C. Pope, Charged rotating black holes in four-dimensional gauged and ungauged supergravities, Nucl. Phys. B 717 (2005) 246 [hep-th/0411045] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Cvetič and D. Youm, Entropy of nonextreme charged rotating black holes in string theory, Phys. Rev. D 54 (1996) 2612 [hep-th/9603147] [INSPIRE].ADSGoogle Scholar
  15. [15]
    M. Cvetič and F. Larsen, Greybody factors and charges in Kerr/CFT, JHEP 09 (2009) 088 [arXiv:0908.1136] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12 (1997) 002 [hep-th/9711053] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    G. Compere, S. de Buyl, E. Jamsin and A. Virmani, G2 dualities in D = 5 supergravity and black strings, Class. Quant. Grav. 26 (2009) 125016 [arXiv:0903.1645] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    P. Figueras, E. Jamsin, J.V. Rocha and A. Virmani, Integrability of five dimensional minimal supergravity and charged rotating black holes, Class. Quant. Grav. 27 (2010) 135011 [arXiv:0912.3199] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    S.-S. Kim, J. Lindman Hornlund, J. Palmkvist and A. Virmani, Extremal solutions of the S3 model and nilpotent orbits of G 2(2), JHEP 08 (2010) 072 [arXiv:1004.5242] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    G. Compere, S. de Buyl, S. Stotyn and A. Virmani, A general black string and its microscopics, JHEP 11 (2010) 133 [arXiv:1006.5464] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J.L. Hornlund and A. Virmani, Extremal limits of the Cvetič-Youm black hole and nilpotent orbits of G 2(2), JHEP 11 (2010) 062 [Erratum ibid. 1205 (2012) 038] [arXiv:1008.3329] [INSPIRE].
  22. [22]
    T. Harmark and N. Obers, Thermodynamics of spinning branes and their dual field theories, JHEP 01 (2000) 008 [hep-th/9910036] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    M. Cvetič and F. Larsen, General rotating black holes in string theory: Grey body factors and event horizons, Phys. Rev. D 56 (1997) 4994 [hep-th/9705192] [INSPIRE].ADSGoogle Scholar
  24. [24]
    J.M. Maldacena and A. Strominger, Black hole grey body factors and D-brane spectroscopy, Phys. Rev. D 55 (1997) 861 [hep-th/9609026] [INSPIRE].MathSciNetADSGoogle Scholar
  25. [25]
    M. Duff, J.T. Liu and J. Rahmfeld, Four-dimensional string-string-string triality, Nucl. Phys. B 459 (1996) 125 [hep-th/9508094] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    R. Emparan and H.S. Reall, Black rings, Class. Quant. Grav. 23 (2006) R169 [hep-th/0608012] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  27. [27]
    C.N. Pope, Lectures on Kaluza-Klein theory,
  28. [28]
    A. Ceresole, R. D’Auria, S. Ferrara and A. Van Proeyen, Duality transformations in supersymmetric Yang-Mills theories coupled to supergravity, Nucl. Phys. B 444 (1995) 92 [hep-th/9502072] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    G.L. Cardoso, J.M. Oberreuter and J. Perz, Entropy function for rotating extremal black holes in very special geometry, JHEP 05 (2007) 025 [hep-th/0701176] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    D. Gaiotto, W. Li and M. Padi, Non-supersymmetric attractor flow in symmetric spaces, JHEP 12 (2007) 093 [arXiv:0710.1638] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    G. Bossard, Y. Michel and B. Pioline, Extremal black holes, nilpotent orbits and the true fake superpotential, JHEP 01 (2010) 038 [arXiv:0908.1742] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    S. Ferrara and S. Sabharwal, Quaternionic manifolds for type II superstring vacua of Calabi-Yau spaces, Nucl. Phys. B 332 (1990) 317 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    G. Bossard and C. Ruef, Interacting non-BPS black holes, Gen. Rel. Grav. 44 (2012) 21 [arXiv:1106.5806] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  34. [34]
    D.V. Gal’tsov and N.G. Scherbluk, Generating technique for U (1)3 5D supergravity, Phys. Rev. D 78 (2008) 064033 [arXiv:0805.3924] [INSPIRE].MathSciNetADSGoogle Scholar
  35. [35]
    K. Copsey and G.T. Horowitz, The role of dipole charges in black hole thermodynamics, Phys. Rev. D 73 (2006) 024015 [hep-th/0505278] [INSPIRE].MathSciNetADSGoogle Scholar
  36. [36]
    M. Cvetič, G. Gibbons and C. Pope, Universal area product formulae for rotating and charged black holes in four and higher dimensions, Phys. Rev. Lett. 106 (2011) 121301 [arXiv:1011.0008] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    D. Astefanesei, K. Goldstein, R.P. Jena, A. Sen and S.P. Trivedi, Rotating attractors, JHEP 10 (2006) 058 [hep-th/0606244] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    H.K. Kunduri, J. Lucietti and H.S. Reall, Near-horizon symmetries of extremal black holes, Class. Quant. Grav. 24 (2007) 4169 [arXiv:0705.4214] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  39. [39]
    J.M. Bardeen and G.T. Horowitz, The extreme Kerr throat geometry: a vacuum analog of AdS 2 × S 2, Phys. Rev. D 60 (1999) 104030 [hep-th/9905099] [INSPIRE].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)GolmGermany

Personalised recommendations