Higher spin fermions in the BTZ black hole

  • Shouvik Datta
  • Justin R. David


Recently it has been shown that the wave equations of bosonic higher spin fields in the BTZ background can be solved exactly. In this work we extend this analysis to fermionic higher spin fields. We solve the wave equations for arbitrary half-integer spin fields in the BTZ black hole background and obtain exact expressions for their quasinormal modes. These quasinormal modes are shown to agree precisely with the poles of the corresponding two point function in the dual conformal field theory as predicted by the AdS/CFT correspondence. We also obtain an expression for the 1-loop determinant for the Euclidean non-rotating BTZ black hole in terms of the quasinormal modes which agrees with that obtained by integrating the heat kernel found by group theoretic methods.


Black Holes in String Theory AdS-CFT Correspondence Black Holes 


  1. [1]
    S. Datta and J.R. David, Higher Spin Quasinormal Modes and One-Loop Determinants in the BTZ black Hole, JHEP 03 (2012) 079 [arXiv:1112.4619] [INSPIRE].ADSGoogle Scholar
  2. [2]
    J.R. David and A. Sadhukhan, Classical integrability in the BTZ black hole, JHEP 08 (2011) 079 [arXiv:1105.0480] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    M. Natsuume and Y. Satoh, String theory on three-dimensional black holes, Int. J. Mod. Phys. A 13 (1998) 1229 [hep-th/9611041] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    M.R. Gaberdiel and R. Gopakumar, An AdS 3 dual for minimal model CFTs, Phys. Rev. D 83 (2011)066007 [arXiv:1011.2986] [INSPIRE].ADSGoogle Scholar
  6. [6]
    T. Creutzig, Y. Hikida and P.B. Ronne, Higher spin AdS 3 supergravity and its dual CFT, JHEP 02 (2012) 109 [arXiv:1111.2139] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    D. Birmingham, I. Sachs and S.N. Solodukhin, Conformal field theory interpretation of black hole quasinormal modes, Phys. Rev. Lett. 88 (2002) 151301 [hep-th/0112055] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [INSPIRE].ADSGoogle Scholar
  11. [11]
    S.S. Gubser, Absorption of photons and fermions by black holes in four-dimensions, Phys. Rev. D 56 (1997) 7854 [hep-th/9706100] [INSPIRE].ADSGoogle Scholar
  12. [12]
    F. Denef, S.A. Hartnoll and S. Sachdev, Black hole determinants and quasinormal modes, Class. Quant. Grav. 27 (2010) 125001 [arXiv:0908.2657] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    J.R. David, M.R. Gaberdiel and R. Gopakumar, The Heat Kernel on AdS 3 and its Applications, JHEP 04 (2010) 125 [arXiv:0911.5085] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    S. Das and A. Dasgupta, Black hole emission rates and the AdS/CFT correspondence, JHEP 10 (1999) 025 [hep-th/9907116] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    I. Buchbinder, V. Krykhtin and A. Reshetnyak, BRST approach to Lagrangian construction for fermionic higher spin fields in (A)dS space, Nucl. Phys. B 787 (2007) 211 [hep-th/0703049] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    R. Metsaev, Massive totally symmetric fields in AdS(d), Phys. Lett. B 590 (2004) 95 [hep-th/0312297] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  17. [17]
    R. Metsaev, Gauge invariant formulation of massive totally symmetric fermionic fields in (A)dS space, Phys. Lett. B 643 (2006) 205 [hep-th/0609029] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    I. Tyutin and M.A. Vasiliev, Lagrangian formulation of irreducible massive fields of arbitrary spin in (2 + 1)-dimensions, Teor. Mat. Fiz. 113 N1 (1997) 45 [hep-th/9704132] [INSPIRE].
  19. [19]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [INSPIRE].ADSGoogle Scholar
  20. [20]
    A. Dasgupta, Emission of fermions from BTZ black holes, Phys. Lett. B 445 (1999) 279 [hep-th/9808086] [INSPIRE].ADSGoogle Scholar
  21. [21]
    N. Iqbal and H. Liu, Real-time response in AdS/CFT with application to spinors, Fortsch. Phys. 57 (2009) 367 [arXiv:0903.2596] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  22. [22]
    J.P. Gauntlett, J. Sonner and D. Waldram, Spectral function of the supersymmetry current, JHEP 11 (2011) 153 [arXiv:1108.1205] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Centre for High Energy PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations