New sum rules from low energy Compton scattering on arbitrary spin target

  • Hovhannes R. Grigoryan
  • Massimo Porrati


We derive two sum rules by studying the low energy Compton scattering on a target of arbitrary (nonzero) spin j. In the first sum rule, we consider the possibility that the intermediate state in the scattering can have spin |j±1| and the same mass as the target. The second sum rule applies if the theory at hand possesses intermediate narrow resonances with masses different from the mass of the scatterer. These sum rules are generalizations of the Gerasimov-Drell-Hearn-Weinberg sum rule. Along with the requirement of tree level unitarity, they relate different low energy couplings in the theory. Using these sum rules, we show that in certain cases the gyromagnetic ratio can differ from the “natural” value g = 2, even at tree level, without spoiling perturbative unitarity. These sum rules can be used as constraints applicable to all supergravity and higher-spin theories that contain particles charged under some U(1) gauge field. In particular, applied to four dimensional N = 8 supergravity in a spontaneously broken phase, these sum rules suggest that for the theory to have a good ultraviolet behavior, additional massive states need to be present, such as those coming from the embedding of the N = 8 supergravity in type II superstring theory. We also discuss the possible implications of the sum rules for QCD in the large-N c limit.


Scattering Amplitudes Sum Rules Supergravity Models 


  1. [1]
    A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    S. Ferrara, M. Porrati and V.L. Telegdi, g = 2 as the natural value of the tree level gyromagnetic ratio of elementary particles, Phys. Rev. D 46 (1992) 3529 [INSPIRE].ADSGoogle Scholar
  3. [3]
    S. Weinberg, Lectures on Elementary Particles and Quantum Field Theory, Volume 1, Brandeis University Summer Institute 1970, S. Deser, M. Grisaru and H. Pendleton (eds.), M.I.T. Press, Cambridge (1970).Google Scholar
  4. [4]
    S. Gerasimov, A sum rule for magnetic moments and the damping of the nucleon magnetic moment in nuclei, Sov. J. Nucl. Phys. 2 (1966) 430 [INSPIRE].Google Scholar
  5. [5]
    S. Drell and A.C. Hearn, Exact Sum Rule for Nucleon Magnetic Moments, Phys. Rev. Lett. 16 (1966) 908 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    D.Z. Freedman and A.K. Das, Gauge Internal Symmetry in Extended Supergravity, Nucl. Phys. B 120 (1977) 221 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    S. Deser, V. Pascalutsa and A. Waldron, Massive spin 3/2 electrodynamics, Phys. Rev. D 62 (2000) 105031 [hep-th/0003011] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    E. Cremmer, J. Scherk and J.H. Schwarz, Spontaneously Broken N = 8 Supergravity, Phys. Lett. B 84 (1979) 83 [INSPIRE].ADSGoogle Scholar
  9. [9]
    J. Scherk and J.H. Schwarz, Spontaneous Breaking of Supersymmetry Through Dimensional Reduction, Phys. Lett. B 82 (1979) 60 [INSPIRE].ADSGoogle Scholar
  10. [10]
    J. Scherk and J.H. Schwarz, How to Get Masses from Extra Dimensions, Nucl. Phys. B 153 (1979) 61 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    E. Sezgin and P. van Nieuwenhuizen, Renormalizability properties of spontaneously broken N = 8 supergravity, Nucl. Phys. B 195 (1982) 325 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Hosoya, K. Ishikawa, Y. Ohkuwa and K. Yamagishi, Gyromagnetic ratio of heavy particles in the Kaluza-Klein theory, Phys. Lett. B 134 (1984) 44 [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    C.K. Zachos, N = 2 supergravity theory with a gauged central charge, Phys. Lett. B 76 (1978) 329 [INSPIRE].ADSGoogle Scholar
  14. [14]
    M. Duff, J.T. Liu and J. Rahmfeld, Dipole moments of black holes and string states, Nucl. Phys. B 494 (1997) 161 [hep-th/9612015] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    M. Duff, J.T. Liu and J. Rahmfeld, g = 1 for Dirichlet 0-branes, Nucl. Phys. B 524 (1998) 129 [hep-th/9801072] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    L. Andrianopoli, R. D’Auria, S. Ferrara and M. Lledó, Gauging of flat groups in four-dimensional supergravity, JHEP 07 (2002) 010 [hep-th/0203206] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R. Rohm, Spontaneous Supersymmetry Breaking in Supersymmetric String Theories, Nucl. Phys. B 237 (1984) 553 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    C. Kounnas and M. Porrati, Spontaneous Supersymmetry Breaking in String Theory, Nucl. Phys. B 310 (1988) 355 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    S.B. Giddings and R.A. Porto, The Gravitational S-matrix, Phys. Rev. D 81 (2010) 025002 [arXiv:0908.0004] [INSPIRE].ADSGoogle Scholar
  20. [20]
    S.B. Giddings, The gravitational S-matrix: Erice lectures, arXiv:1105.2036 [INSPIRE].
  21. [21]
    T. Banks, Arguments Against a Finite N = 8 Supergravity, arXiv:1205.5768 [INSPIRE].
  22. [22]
    Z. Bern, J. Carrasco and H. Johansson, Progress on Ultraviolet Finiteness of Supergravity, arXiv:0902.3765 [INSPIRE].
  23. [23]
    M. Porrati, Universal Limits on Massless High-Spin Particles, Phys. Rev. D 78 (2008) 065016 [arXiv:0804.4672] [INSPIRE].MathSciNetADSGoogle Scholar
  24. [24]
    F. Low, Scattering of light of very low frequency by systems of spin 1/2, Phys. Rev. 96 (1954) 1428 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  25. [25]
    M. Gell-Mann and M. Goldberger, Scattering of low-energy photons by particles of spin 1/2, Phys. Rev. 96 (1954) 1433 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  26. [26]
    S. Ferrara and M. Porrati, Supersymmetric sum rules on magnetic dipole moments of arbitrary spin particles, Phys. Lett. B 288 (1992) 85 [INSPIRE].MathSciNetADSGoogle Scholar
  27. [27]
    H. Jones and M. Scadron, Multipole gamma N Delta form-factors and resonant photoproduction and electroproduction, Annals Phys. 81 (1973) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    V. Pascalutsa and D.R. Phillips, Effective theory of the delta(1232) in Compton scattering off the nucleon, Phys. Rev. C 67 (2003) 055202 [nucl-th/0212024] [INSPIRE].ADSGoogle Scholar
  29. [29]
    V. Pascalutsa and D.R. Phillips, Model independent effects of Delta excitation in nucleon spin polarizabilities, Phys. Rev. C 68 (2003) 055205 [nucl-th/0305043] [INSPIRE].ADSGoogle Scholar
  30. [30]
    E. Witten, Baryons in the 1/n Expansion, Nucl. Phys. B 160 (1979) 57 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    G.S. Adkins, C.R. Nappi and E. Witten, Static Properties of Nucleons in the Skyrme Model, Nucl. Phys. B 228 (1983) 552 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    H.R. Grigoryan, T.-S. Lee and H.-U. Yee, Electromagnetic Nucleon-to-Delta Transition in Holographic QCD, Phys. Rev. D 80 (2009) 055006 [arXiv:0904.3710] [INSPIRE].ADSGoogle Scholar
  33. [33]
    L. Tiator, D. Drechsel, O. Hanstein, S. Kamalov and S. Yang, The E2 / M1 and C2/M1 ratios and form-factors in NDelta transitions, Nucl. Phys. A 689 (2001) 205 [nucl-th/0012046] [INSPIRE].ADSGoogle Scholar
  34. [34]
    S.J. Brodsky and J.R. Primack, The Electromagnetic Interactions of Composite Systems, Annals Phys. 52 (1969) 315 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S.J. Brodsky and S. Drell, The Anomalous Magnetic Moment and Limits on Fermion Substructure, Phys. Rev. D 22 (1980) 2236 [INSPIRE].ADSGoogle Scholar
  36. [36]
    R. Devenish, T. Eisenschitz and J. Korner, Electromagnetic N N Transition Form-Factors, Phys. Rev. D 14 (1976) 3063 [INSPIRE].ADSGoogle Scholar
  37. [37]
    P.R. Auvil and J.J. Brehm, Wave Functions for Particles of Higher Spin, Phys. Rev. 145 (1966) 1152.ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Center for Cosmology and Particle Physics, Department of PhysicsNew York UniversityNew YorkU.S.A.

Personalised recommendations