Composite scalar dark matter

  • Michele Frigerio
  • Alex Pomarol
  • Francesco Riva
  • Alfredo Urbano
Open Access


We show that the dark matter (DM) could be a light composite scalar η, emerging from a TeV-scale strongly-coupled sector as a pseudo Nambu-Goldstone boson (pNGB). Such state arises naturally in scenarios where the Higgs is also a composite pNGB, as in O(6)/O(5) models, which are particularly predictive, since the low-energy interactions of η are determined by symmetry considerations. We identify the region of parameters where η has the required DM relic density, satisfying at the same time the constraints from Higgs searches at the LHC, as well as DM direct searches. Compositeness, in addition to justify the lightness of the scalars, can enhance the DM scattering rates and lead to an excellent discovery prospect for the near future. For a Higgs mass m h  ≃ 125 GeV and a pNGB characteristic scale f ≲ 1 TeV, we find that the DM mass is either m η  ≃ 50–70 GeV, with DM annihilations driven by the Higgs resonance, or in the range 100–500 GeV, where the DM derivative interaction with the Higgs becomes dominant. In the former case the invisible Higgs decay to two DM particles could weaken the LHC Higgs signal.


Higgs Physics Cosmology of Theories beyond the SM Technicolor and Composite Models 


  1. [1]
    V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].MathSciNetADSGoogle Scholar
  2. [2]
    J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].ADSGoogle Scholar
  3. [3]
    C. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    C.E. Yaguna, Gamma rays from the annihilation of singlet scalar dark matter, JCAP 03 (2009) 003 [arXiv:0810.4267] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Farina, D. Pappadopulo and A. Strumia, CDMS stands for constrained dark matter singlet, Phys. Lett. B 688 (2010) 329 [arXiv:0912.5038] [INSPIRE].ADSGoogle Scholar
  6. [6]
    W.-L. Guo and Y.-L. Wu, The real singlet scalar dark matter model, JHEP 10 (2010) 083 [arXiv:1006.2518] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    Y. Mambrini, Higgs searches and singlet scalar dark matter: Combined constraints from XENON100 and the LHC, Phys. Rev. D 84 (2011) 115017 [arXiv:1108.0671] [INSPIRE].ADSGoogle Scholar
  8. [8]
    A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].ADSGoogle Scholar
  9. [9]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the minimal composite Higgs model, JHEP 04 (2009) 070 [arXiv:0902.1483] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J. Galloway, J.A. Evans, M.A. Luty and R.A. Tacchi, Minimal conformal technicolor and precision electroweak tests, JHEP 10 (2010) 086 [arXiv:1001.1361] [INSPIRE].Google Scholar
  12. [12]
    T.A. Ryttov and F. Sannino, Ultra minimal technicolor and its dark matter TIMP, Phys. Rev. D 78 (2008) 115010 [arXiv:0809.0713] [INSPIRE].ADSGoogle Scholar
  13. [13]
    Y. Hosotani, P. Ko and M. Tanaka, Stable Higgs bosons as cold dark matter, Phys. Lett. B 680 (2009) 179 [arXiv:0908.0212] [INSPIRE].ADSGoogle Scholar
  14. [14]
    J.L. Diaz-Cruz, Holographic dark matter and Higgs, Phys. Rev. Lett. 100 (2008) 221802 [arXiv:0711.0488] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    C.E. Yaguna, The singlet scalar as FIMP dark matter, JHEP 08 (2011) 060 [arXiv:1105.1654] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Frigerio, T. Hambye and E. Masso, Sub-GeV dark matter as pseudo-Goldstone from the seesaw scale, Phys. Rev. X 1 (2011) 021026 [arXiv:1107.4564] [INSPIRE].Google Scholar
  20. [20]
    LEP Higgs Working for Higgs boson searches, ALEPH, DELPHI, CERN-L3, OPAL collaboration, Searches for invisible Higgs bosons: preliminary combined results using LEP data collected at energies up to 209−eV, hep-ex/0107032 [INSPIRE].
  21. [21]
    ATLAS collaboration, G. Aad et al., Combined search for the standard model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt {s} = {7} \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].ADSGoogle Scholar
  22. [22]
    CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt {s} = {7} \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].ADSGoogle Scholar
  23. [23]
    A. Falkowski, Pseudo-goldstone Higgs production via gluon fusion, Phys. Rev. D 77 (2008) 055018 [arXiv:0711.0828] [INSPIRE].ADSGoogle Scholar
  24. [24]
    I. Low and A. Vichi, On the production of a composite Higgs boson, Phys. Rev. D 84 (2011) 045019 [arXiv:1010.2753] [INSPIRE].ADSGoogle Scholar
  25. [25]
    A. Azatov and J. Galloway, Light custodians and Higgs physics in composite models, Phys. Rev. D 85 (2012) 055013 [arXiv:1110.5646] [INSPIRE].ADSGoogle Scholar
  26. [26]
    XENON100 collaboration, E. Aprile et al., Dark matter results from 100 live days of XENON100 data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    DAMA, LIBRA collaboration, R. Bernabei et al., New results from DAMA/LIBRA, Eur. Phys. J. C 67 (2010) 39 [arXiv:1002.1028] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    DAMA collaboration, R. Bernabei et al., First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J. C 56 (2008) 333 [arXiv:0804.2741] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    C. Aalseth et al., Search for an annual modulation in a p-type point contact germanium dark matter detector, Phys. Rev. Lett. 107 (2011) 141301 [arXiv:1106.0650] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    CoGeNT collaboration, C. Aalseth et al., Results from a search for light-mass dark matter with a p-type point contact germanium detector, Phys. Rev. Lett. 106 (2011) 131301 [arXiv:1002.4703] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    G. Angloher et al., Results from 730 kg days of the CRESST-II dark matter search, Eur. Phys. J. C 72 (2012) 1971 [arXiv:1109.0702] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    D. Hooper, The empirical case for 10 GeV dark matter, arXiv:1201.1303 [INSPIRE].
  33. [33]
    C. Kelso, D. Hooper and M.R. Buckley, Toward a consistent picture for CRESST, CoGeNT and DAMA, Phys. Rev. D 85 (2012) 043515 [arXiv:1110.5338] [INSPIRE].ADSGoogle Scholar
  34. [34]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Cirelli et al., PPPC 4 DM ID: a Poor Particle Physicist Cookbook for Dark Matter Indirect Detection, JCAP 03 (2011) 051 [arXiv:1012.4515] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    P. Ciafaloni et al., Weak corrections are relevant for dark matter indirect detection, JCAP 03 (2011) 019 [arXiv:1009.0224] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J. Lavalle, 10 GeV dark matter candidates and cosmic-ray antiprotons, Phys. Rev. D 82 (2010) 081302 [arXiv:1007.5253] [INSPIRE].ADSGoogle Scholar
  38. [38]
    PAMELA collaboration, O. Adriani et al., PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy, Phys. Rev. Lett. 105 (2010) 121101 [arXiv:1007.0821] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S. Galli, F. Iocco, G. Bertone and A. Melchiorri, CMB constraints on dark matter models with large annihilation cross-section, Phys. Rev. D 80 (2009) 023505 [arXiv:0905.0003] [INSPIRE].ADSGoogle Scholar
  40. [40]
    D. Feldman, Z. Liu and P. Nath, PAMELA positron excess as a signal from the hidden sector, Phys. Rev. D 79 (2009) 063509 [arXiv:0810.5762] [INSPIRE].ADSGoogle Scholar
  41. [41]
    M. Ibe, H. Murayama and T. Yanagida, Breit-Wigner enhancement of dark matter annihilation, Phys. Rev. D 79 (2009) 095009 [arXiv:0812.0072] [INSPIRE].ADSGoogle Scholar
  42. [42]
    W.-L. Guo and Y.-L. Wu, Enhancement of dark matter annihilation via Breit-Wigner resonance, Phys. Rev. D 79 (2009) 055012 [arXiv:0901.1450] [INSPIRE].ADSGoogle Scholar
  43. [43]
    LAT collaboration, M. Ackermann et al., Fermi LAT search for dark matter in gamma-ray lines and the inclusive photon spectrum, arXiv:1205.2739 [INSPIRE].
  44. [44]
    P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, Missing energy signatures of dark matter at the LHC, Phys. Rev. D 85 (2012) 056011 [arXiv:1109.4398] [INSPIRE].ADSGoogle Scholar
  45. [45]
    J. Goodman et al., Constraints on dark matter from colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE].ADSGoogle Scholar
  46. [46]
    K. Cheung, P.-Y. Tseng, Y.-L.S. Tsai and T.-C. Yuan, Global constraints on effective dark matter interactions: relic density, direct detection, indirect detection and collider, JCAP 05 (2012) 001 [arXiv:1201.3402] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs search at the LHC, JHEP 05 (2010) 065 [arXiv:1003.3251] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs results from natural new physics perspective, arXiv:1202.3144 [INSPIRE].
  49. [49]
    A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J.R. Espinosa, T. Konstandin and F. Riva, Strong electroweak phase transitions in the standard model with a singlet, Nucl. Phys. B 854 (2012) 592 [arXiv:1107.5441] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    J.R. Espinosa, B. Gripaios, T. Konstandin and F. Riva, Electroweak baryogenesis in non-minimal composite Higgs models, JCAP 01 (2012) 012 [arXiv:1110.2876] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    J. Kehayias and S. Profumo, Semi-analytic calculation of the gravitational wave signal from the electroweak phase transition for general quartic scalar effective potentials, JCAP 03 (2010) 003 [arXiv:0911.0687] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological lagrangians. 2, Phys. Rev. 177 (1969) 2247 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    J. Mrazek et al., The other natural two Higgs doublet model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\overline b \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].ADSGoogle Scholar
  58. [58]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].ADSGoogle Scholar
  59. [59]
    H.-Y. Cheng and C.-W. Chiang, Revisiting scalar and pseudoscalar couplings with nucleons, arXiv:1202.1292 [INSPIRE].

Copyright information

© SISSA 2012

Authors and Affiliations

  • Michele Frigerio
    • 1
    • 2
  • Alex Pomarol
    • 3
  • Francesco Riva
    • 4
  • Alfredo Urbano
    • 5
  1. 1.CNRS, Laboratoire Charles Coulomb, UMR 5221MontpellierFrance
  2. 2.Université Montpellier 2, Laboratoire Charles Coulomb, UMR 5221MontpellierFrance
  3. 3.Departament de FisicaUniversitat Autònoma de BarcelonaBarcelonaSpain
  4. 4.IFAEUniversitat Autònoma de BarcelonaBarcelonaSpain
  5. 5.Laboratoire de Physique Théorique de l’ École Normale SupérieureParisFrance

Personalised recommendations