Advertisement

Supersymmetry breaking in Chern-Simons-matter theories

  • Takao Suyama
Article

Abstract

Some of supersymmetric Chern-Simons theories are known to exhibit supersymmetry breaking when the Chern-Simons level is less than a certain number. The mechanism of the supersymmetry breaking is, however, not clear from the field theory viewpoint. In this paper, we discuss vacuum states of \( \mathcal{N} = 2 \) pure Chern-Simons theory and \( \mathcal{N} = 2 \) Chern-Simons-matter theories of quiver type using related theories in which Chern-Simons terms are replaced with (anti-)fundamental chiral multiplets. In the latter theories, supersymmetry breaking can be shown to occur by examining that the vacuum energy is non-zero.

Keywords

Supersymmetry Breaking Chern-Simons Theories Nonperturbative Effects 

References

  1. [1]
    J. Bagger and N. Lambert, Modeling multiple M2’s, Phys. Rev. D 75 (2007) 045020 [hep-th/0611108] [INSPIRE].MathSciNetADSGoogle Scholar
  2. [2]
    J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    J. Bagger and N. Lambert, Comments on multiple M2-branes, JHEP 02 (2008) 105 [arXiv:0712.3738] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    A. Gustavsson, Selfdual strings and loop space Nahm equations, JHEP 04 (2008) 083 [arXiv:0802.3456] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    M. Van Raamsdonk, Comments on the Bagger-Lambert theory and multiple M2-branes, JHEP 05 (2008) 105 [arXiv:0803.3803] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 5, 6 superconformal Chern-Simons theories and M2-branes on orbifolds, JHEP 09 (2008) 002 [arXiv:0806.4977] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    O. Bergman, A. Hanany, A. Karch and B. Kol, Branes and supersymmetry breaking in three-dimensional gauge theories, JHEP 10 (1999) 036 [hep-th/9908075] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    K. Ohta, Supersymmetric index and s rule for type IIB branes, JHEP 10 (1999) 006 [hep-th/9908120] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    T. Kitao, K. Ohta and N. Ohta, Three-dimensional gauge dynamics from brane configurations with (p, q) - Five-brane, Nucl. Phys. B 539 (1999) 79 [hep-th/9808111] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    E. Witten, Supersymmetric index of three-dimensional gauge theory, in The many faces of the superworld, M.A. Shifman ed., World Scientific, Singapore (1999) 156 [hep-th/9903005] [INSPIRE].Google Scholar
  15. [15]
    V. Niarchos, R-charges, chiral rings and RG flows in supersymmetric Chern-Simons-matter theories, JHEP 05 (2009) 054 [arXiv:0903.0435] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    T. Morita and V. Niarchos, F-theorem, duality and SUSY breaking in one-adjoint Chern-Simons-matter theories, Nucl. Phys. B 858 (2012) 84 [arXiv:1108.4963] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    A. Smilga, Once more on the Witten index of 3D supersymmetric YM-CS theory, JHEP 05 (2012) 103 [arXiv:1202.6566] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Agarwal and V. Nair, Supersymmetry and mass gap in 2 + 1 dimensions: a gauge invariant hamiltonian analysis, Phys. Rev. D 85 (2012) 085011 [arXiv:1201.6609] [INSPIRE].ADSGoogle Scholar
  19. [19]
    A. Niemi and G. Semenoff, Axial anomaly induced fermion fractionization and effective gauge theory actions in odd dimensional space-times, Phys. Rev. Lett. 51 (1983) 2077 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    A. Redlich, Parity violation and gauge noninvariance of the effective gauge field action in three-dimensions, Phys. Rev. D 29 (1984) 2366 [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    O. Aharony, A. Hanany, K.A. Intriligator, N. Seiberg and M. Strassler, Aspects of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 499 (1997) 67 [hep-th/9703110] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Annals Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406] [INSPIRE].Google Scholar
  23. [23]
    J. de Boer, K. Hori and Y. Oz, Dynamics of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 500 (1997) 163 [hep-th/9703100] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    K.A. Intriligator and N. Seiberg, Lectures on supersymmetric gauge theories and electric-magnetic duality, Nucl. Phys. Proc. Suppl. 45BC (1996) 1 [hep-th/9509066] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  25. [25]
    M.A. Luty and W. Taylor, Varieties of vacua in classical supersymmetric gauge theories, Phys. Rev. D 53 (1996) 3399 [hep-th/9506098] [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    K.A. Intriligator and N. Seiberg, The runaway quiver, JHEP 02 (2006) 031 [hep-th/0512347] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    I. Affleck, M. Dine and N. Seiberg, Dynamical supersymmetry breaking in four-dimensions and its phenomenological implications, Nucl. Phys. B 256 (1985) 557 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    E. Witten, Dynamical breaking of supersymmetry, Nucl. Phys. B 188 (1981) 513 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    D. Gaiotto and X. Yin, Notes on superconformal Chern-Simons-matter theories, JHEP 08 (2007) 056 [arXiv:0704.3740] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.BK-21 Frontier Research Physics Division, and Center for Theoretical PhysicsSeoul National UniversitySeoulKorea

Personalised recommendations