Ramification points of Seiberg-Witten curves



When the Seiberg-Witten curve of a four-dimensional \( \mathcal{N} = 2 \) supersymmetric gauge theory wraps a Riemann surface as a multi-sheeted cover, a topological constraint requires that in general the curve should develop ramification points. We show that, while some of the branch points of the covering map can be identified with the punctures that appear in the work of Gaiotto, the ramification points give us additional branch points whose locations on the Riemann surface can have dependence not only on gauge coupling parameters but on Coulomb branch parameters and mass parameters of the theory. We describe how these branch points can help us to understand interesting physics in various limits of the parameters, including Argyres-Seiberg duality and Argyres-Douglas fixed points.


Supersymmetric gauge theory Duality in Gauge Field Theories Differential and Algebraic Geometry M-Theory 


  1. [1]
    E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    N. Seiberg and E. Witten, Monopole condensation, and confinement in N =2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N =2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    D. Gaiotto, N =2 dualities, arXiv:0904.2715 [SPIRES].
  5. [5]
    P.C. Argyres and N. Seiberg, S-duality in N =2 supersymmetric gauge theories, JHEP 12 (2007) 088 [arXiv:0711. 0054] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    P.C. Argyres and M.R. Douglas, New phenomena in SU(3) supersymmetric gauge theory, Nucl. Phys. B 448 (1995) 93 [hep-th/9505062] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    F. Kirwan, Complex algebraic curves, Cambridge University Press, Cambridge U.K. (1992).MATHGoogle Scholar
  8. [8]
    P.A. Griffiths, Introduction to algebraic curves, American Mathematical Society, U.S.A. (1989).Google Scholar
  9. [9]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation, arXiv:0907.3987 [SPIRES].
  10. [10]
    A. Fayyazuddin and M. Spalinski, The Seiberg-Witten differential from M-theory, Nucl. Phys. B 508 (1997) 219 [hep-th/9706087] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    M. Henningson and P. Yi, Four-dimensional BPS-spectra via M-theory, Phys. Rev. D 57 (1998) 1291 [hep-th/9707251] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    A. Mikhailov, BPS states and minimal surfaces, Nucl. Phys. B 533 (1998) 243 [hep-th/9708068] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    T.J. Hollowood, Strong coupling N =2 gauge theory with arbitrary gauge group, Adv. Theor. Math. Phys. 2 (1998) 335 [hep-th/9710073] [SPIRES].MathSciNetMATHGoogle Scholar
  14. [14]
    P.C. Argyres, M. Ronen Plesser, N. Seiberg and E. Witten, New N =2 superconformal field theories in four dimensions, Nucl. Phys. B 461 (1996) 71 [hep-th/9511154] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    P.C. Argyres and A.E. Faraggi, The vacuum structure and spectrum of N =2 supersymmetric SU(n) gauge theory, Phys. Rev. Lett. 74 (1995) 3931 [hep-th/9411057] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    A. Klemm, W. Lerche, S. Yankielowicz and S. Theisen, Simple singularities and N =2 supersymmetric Yang-Mills theory, Phys. Lett. B 344 (1995) 169 [hep-th/9411048] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    P.C. Argyres, M.R. Plesser and A.D. Shapere, The Coulomb phase of N =2 supersymmetric QCD, Phys. Rev. Lett. 75 (1995) 1699 [hep-th/9505100] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  18. [18]
    A. Hanany and Y. Oz, On the quantum moduli space of vacua of N =2 supersymmetric SU(N c) gauge theories, Nucl. Phys. B 452 (1995) 283 [hep-th/9505075] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    U.H. Danielsson and B. Sundborg, The moduli space and monodromies of N =2 supersymmetric SO(2r + 1) Yang-Mills theory, Phys. Lett. B 358 (1995) 273 [hep-th/9504102] [SPIRES].MathSciNetADSGoogle Scholar
  20. [20]
    A. Brandhuber and K. Landsteiner, On the monodromies of N =2 supersymmetric Yang-Mills theory with gauge group SO(2n), Phys. Lett. B 358 (1995) 73 [hep-th/9507008] [SPIRES].MathSciNetADSGoogle Scholar
  21. [21]
    P.C. Argyres and A.D. Shapere, The vacuum structure of N =2 superQCD with classical gauge groups, Nucl. Phys. B 461 (1996) 437 [hep-th/9509175] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    E.J. Martinec and N.P. Warner, Integrable systems and supersymmetric gauge theory, Nucl. Phys. B 459 (1996) 97 [hep-th/9509161] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    A. Klemm, W. Lerche, P. Mayr, C. Vafa and N.P. Warner, Self-dual strings and N =2 supersymmetric field theory, Nucl. Phys. B 477 (1996) 746 [hep-th/9604034] [SPIRES].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of PhysicsCalifornia Institute of TechnologyPasadenaU.S.A.

Personalised recommendations