Advertisement

Non-extremal black holes of N = 2, d = 4 supergravity

  • Pietro Galli
  • Tomás Ortín
  • Jan Perz
  • Carlos S. Shahbazi
Article

Abstract

We propose a generic recipe for deforming extremal black holes into non-extremal black holes and we use it to find and study the static non-extremal black-hole solutions of several N = 2, d = 4 supergravity models \( \left( {{{{{\text{SL}}\left( {2,\mathbb{R}} \right)}} \left/ {{{\text{U}}(1)}} \right.}} \right. \), \( {\overline {\mathbb{C}\mathbb{P}}^n} \) and STU with four charges). In all the cases considered, the non-extremal family of solutions smoothly interpolates between all the different extremal limits, supersymmetric and not supersymmetric. This fact can be used to explicitly find extremal non-supersymmetric solutions also in the cases in which the attractor mechanism does not completely fix the values of the scalars on the event horizon and they still depend on the boundary conditions at spatial infinity.

We compare (supersymmetry) Bogomol’nyi bounds with extremality bounds, we find the first-order flow equations for the non-extremal solutions and the corresponding super-potential, which gives in the different extremal limits different superpotentials for extremal black holes. We also compute the entropies (areas) of the inner (Cauchy) and outer (event) horizons, finding in all cases that their product gives the square of the moduli-independent entropy of the extremal solution with the same electric and magnetic charges.

Keywords

Supersymmetry and Duality Black Holes in String Theory Black Holes Supergravity Models 

References

  1. [1]
    S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev. D 52 (1995) 5412 [hep-th/9508072] [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    A. Strominger, Macroscopic Entropy of N = 2 Extremal Black Holes, Phys. Lett. B 383 (1996) 39 [hep-th/9602111] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    S. Ferrara and R. Kallosh, Supersymmetry and Attractors, Phys. Rev. D 54 (1996) 1514 [hep-th/9602136] [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    S. Ferrara and R. Kallosh, Universality of Supersymmetric Attractors, Phys. Rev. D 54 (1996) 1525 [hep-th/9603090] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    A. Strominger and C. Vafa, Microscopic Origin of the Bekenstein-Hawking Entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [SPIRES].MathSciNetADSGoogle Scholar
  6. [6]
    G.W. Gibbons and C.M. Hull, A Bogomolny Bound for General Relativity and Solitons in N = 2 Supergravity, Phys. Lett. B 109 (1982) 190 [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    K.P. Tod, All Metrics Admitting Supercovariantly Constant Spinors, Phys. Lett. B 121 (1983) 241 [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    K. Behrndt et al., Classical and quantum N = 2 supersymmetric black holes, Nucl. Phys. B 488 (1997) 236 [hep-th/9610105] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    W.A. Sabra, General static N = 2 black holes, Mod. Phys. Lett. A 12 (1997) 2585 [hep-th/9703101] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    W.A. Sabra, Black holes in N = 2 supergravity theories and harmonic functions, Nucl. Phys. B 510 (1998) 247 [hep-th/9704147] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    K. Behrndt, D. Lüst and W.A. Sabra, Stationary solutions of N = 2 supergravity, Nucl. Phys. B 510 (1998) 264 [hep-th/9705169] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    G.L. Cardoso, B. de Wit, J. Käppeli and T. Mohaupt, Stationary BPS solutions in N = 2 supergravity with R 2 interactions, JHEP 12 (2000) 019 [hep-th/0009234] [SPIRES].CrossRefGoogle Scholar
  13. [13]
    F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    B. Bates and F. Denef, Exact solutions for supersymmetric stationary black hole composites, hep-th/0304094 [SPIRES].
  15. [15]
    M.M. Caldarelli and D. Klemm, All supersymmetric solutions of N = 2, D = 4 gauged supergravity, JHEP 09 (2003) 019 [hep-th/0307022] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    P. Meessen and T. Ortín, The supersymmetric configurations of N = 2, D = 4 supergravity coupled to vector supermultiplets, Nucl. Phys. B 749 (2006) 291 [hep-th/0603099] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    J. Bellorín, P. Meessen and T. Ortín, Supersymmetry, attractors and cosmic censorship, Nucl. Phys. B 762 (2007) 229 [hep-th/0606201] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    M. Hüebscher, P. Meessen, T. Ortín and S. Vaulà, Supersymmetric N = 2 Einstein-Yang-Mills monopoles and covariant attractors, Phys. Rev. D 78 (2008) 065031 [arXiv:0712.1530] [SPIRES].ADSGoogle Scholar
  19. [19]
    P. Meessen, Supersymmetric coloured/hairy black holes, Phys. Lett. B 665 (2008) 388 [arXiv:0803.0684] [SPIRES].MathSciNetADSGoogle Scholar
  20. [20]
    M. Hübscher, P. Meessen, T. Ortín and S. Vaulà, N = 2 Einstein-Yang-Mills’s BPS solutions, JHEP 09 (2008) 099 [arXiv:0806.1477] [SPIRES].CrossRefGoogle Scholar
  21. [21]
    S.L. Cacciatori, D. Klemm, D.S. Mansi and E. Zorzan, All timelike supersymmetric solutions of N = 2, D = 4 gauged supergravity coupled to abelian vector multiplets, JHEP 05 (2008) 097 [arXiv:0804.0009] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    T. Mohaupt, Black hole entropy, special geometry and strings, Fortsch. Phys. 49 (2001) 3 [hep-th/0007195] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  23. [23]
    G.T. Horowitz and A. Strominger, Counting States of Near-Extremal Black Holes, Phys. Rev. Lett. 77 (1996) 2368 [hep-th/9602051] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    M. Cvetič and D. Youm, Entropy of Non-Extreme Charged Rotating Black Holes in String Theory, Phys. Rev. D 54 (1996) 2612 [hep-th/9603147] [SPIRES].ADSGoogle Scholar
  25. [25]
    D. Kastor and K.Z. Win, Non-extreme Calabi-Yau black holes, Phys. Lett. B 411 (1997) 33 [hep-th/9705090] [SPIRES].MathSciNetADSGoogle Scholar
  26. [26]
    K. Behrndt, M. Cvetič and W.A. Sabra, The entropy of near-extreme N = 2 black holes, Phys. Rev. D 58 (1998) 084018 [hep-th/9712221] [SPIRES].ADSGoogle Scholar
  27. [27]
    G.L. Cardoso and V. Grass, On five-dimensional non-extremal charged black holes and FRW cosmology, Nucl. Phys. B 803 (2008) 209 [arXiv:0803.2819] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    E. Gruss and Y. Oz, Large Charge Four-Dimensional Non-Extremal N = 2 Black Holes with R 2 -Terms, Class. Quant. Grav. 26 (2009) 245019 [arXiv:0902.3799] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    E. Gruss and Y. Oz, Large Charge Four-Dimensional Extremal N = 2 Black Holes with R 2 -Terms, JHEP 05 (2009) 041 [arXiv:0902.0831] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    T. Ortín, Extremality versus supersymmetry in stringy black holes, Phys. Lett. B 422 (1998) 93 [hep-th/9612142] [SPIRES].ADSGoogle Scholar
  31. [31]
    T. Mohaupt and O. Vaughan, Non-extremal Black Holes, Harmonic Functions and Attractor Equations, Class. Quant. Grav. 27 (2010) 235008 [arXiv:1006.3439] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    S. Ferrara, G.W. Gibbons and R. Kallosh, Black holes and critical points in moduli space, Nucl. Phys. B 500 (1997) 75 [hep-th/9702103] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    R. Kallosh, N. Sivanandam and M. Soroush, Exact attractive non-BPS STU black holes, Phys. Rev. D 74 (2006) 065008 [hep-th/0606263] [SPIRES].MathSciNetADSGoogle Scholar
  34. [34]
    G.W. Gibbons, Antigravitating Black Hole Solitons with Scalar Hair in N = 4 Supergravity, Nucl. Phys. B 207 (1982) 337 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    G.W. Gibbons, R. Kallosh and B. Kol, Moduli, scalar charges and the first law of black hole thermodynamics, Phys. Rev. Lett. 77 (1996) 4992 [hep-th/9607108] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    G.W. Moore, Arithmetic and attractors, hep-th/9807087 [SPIRES].
  37. [37]
    A. Sen, Entropy function for heterotic black holes, JHEP 03 (2006) 008 [hep-th/0508042] [SPIRES].ADSCrossRefGoogle Scholar
  38. [38]
    J. Perz, P. Smyth, T. Van Riet and B. Vercnocke, First-order flow equations for extremal and non-extremal black holes, JHEP 03 (2009) 150 [arXiv:0810.1528] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    C.M. Miller, K. Schalm and E.J. Weinberg, Nonextremal black holes are BPS, Phys. Rev. D 76 (2007) 044001 [hep-th/0612308] [SPIRES].MathSciNetADSGoogle Scholar
  40. [40]
    B. Janssen, P. Smyth, T. Van Riet and B. Vercnocke, A first-order formalism for timelike and spacelike brane solutions, JHEP 04 (2008) 007 [arXiv:0712.2808] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    L. Andrianopoli, R. D’Auria, E. Orazi and M. Trigiante, First Order Description of Black Holes in Moduli Space, JHEP 11 (2007) 032 [arXiv:0706.0712] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    L. Andrianopoli, R. D’Auria, E. Orazi and M. Trigiante, First Order Description of D = 4 static Black Holes and the Hamilton-Jacobi equation, Nucl. Phys. B 833 (2010) 1 [arXiv:0905.3938] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    W. Chemissany et al., Black holes in supergravity and integrability, JHEP 09 (2010) 080 [arXiv:1007.3209] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    A. Ceresole and G. Dall’Agata, Flow Equations for Non-BPS Extremal Black Holes, JHEP 03 (2007) 110 [hep-th/0702088] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    L. Andrianopoli et al., N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: Symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  46. [46]
    A. Van Proeyen, N = 2 supergravity in d = 4, 5, 6 and its matter couplings, lectures given at the Institut Henri Poincaré, Paris France, November 2000, http://itf.fys.kuleuven.be/∼toine/LectParis.pdf.
  47. [47]
    B. de Wit and A. Van Proeyen, Potentials and Symmetries of General Gauged N = 2 Supergravity: Yang-Mills Models, Nucl. Phys. B 245 (1984) 89 [SPIRES].ADSCrossRefGoogle Scholar
  48. [48]
    B. de Wit, P.G. Lauwers and A. Van Proeyen, Lagrangians of N = 2 Supergravity — Matter Systems, Nucl. Phys. B 255 (1985) 569 [SPIRES].ADSGoogle Scholar
  49. [49]
    A. Sen, Black Hole Entropy Function and the Attractor Mechanism in Higher Derivative Gravity, JHEP 09 (2005) 038 [hep-th/0506177] [SPIRES].ADSCrossRefGoogle Scholar
  50. [50]
    K. Goldstein, N. Iizuka, R.P. Jena and S.P. Trivedi, Non-supersymmetric attractors, Phys. Rev. D 72 (2005) 124021 [hep-th/0507096] [SPIRES].MathSciNetADSGoogle Scholar
  51. [51]
    P.K. Tripathy and S.P. Trivedi, Non-Supersymmetric Attractors in String Theory, JHEP 03 (2006) 022 [hep-th/0511117] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    R.R. Khuri and T. Ortín, A Non-Supersymmetric Dyonic Extreme Reissner-Nordstrom Black Hole, Phys. Lett. B 373 (1996) 56 [hep-th/9512178] [SPIRES].ADSGoogle Scholar
  53. [53]
    T. Ortín, Non-supersymmetric (but) extreme black holes, scalar hair and other open problems, proceedings of 33rd Karpacz Winter School of Theoretical Physics “Duality — Strings & Fields, Karpacz Poland (1997), Z. Hasiewicz, Z. Jaskólski and J. Sobczyk eds. [Nucl. Phys. Proc. Suppl. A 61 (1998) 131] [hep-th/9705095] [SPIRES].
  54. [54]
    R. Kallosh, N. Sivanandam and M. Soroush, The non-BPS black hole attractor equation, JHEP 03 (2006) 060 [hep-th/0602005] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    E. Lozano-Tellechea and T. Ortín, The general, duality-invariant family of non-BPS black-hole solutions of N = 4, D = 4 supergravity, Nucl. Phys. B 569 (2000) 435 [hep-th/9910020] [SPIRES].ADSCrossRefGoogle Scholar
  56. [56]
    D. Garfinkle, G.T. Horowitz and A. Strominger, Charged black holes in string theory, Phys. Rev. D 43 (1991) 3140 [SPIRES].MathSciNetADSGoogle Scholar
  57. [57]
    A.D. Shapere, S. Trivedi and F. Wilczek, Dual dilaton dyons, Mod. Phys. Lett. A 6 (1991) 2677 [SPIRES].MathSciNetADSGoogle Scholar
  58. [58]
    T. Ortín, Electric-magnetic duality and supersymmetry in stringy black holes, Phys. Rev. D 47 (1993) 3136 [hep-th/9208078] [SPIRES].ADSGoogle Scholar
  59. [59]
    R. Kallosh and T. Ortín, Charge quantization of axion-dilaton black holes, Phys. Rev. D 48 (1993) 742 [hep-th/9302109] [SPIRES].ADSGoogle Scholar
  60. [60]
    R. Kallosh, D. Kastor, T. Ortín and T. Torma, Supersymmetry and stationary solutions in dilaton axion gravity, Phys. Rev. D 50 (1994) 6374 [hep-th/9406059] [SPIRES].ADSGoogle Scholar
  61. [61]
    D.V. Galtsov and O.V. Kechkin, Ehlers-Harrison type transformations in dilaton-axion gravity, Phys. Rev. D 50 (1994) 7394 [hep-th/9407155] [SPIRES].MathSciNetADSGoogle Scholar
  62. [62]
    D.V. Galtsov, A.A. Garcia and O.V. Kechkin, Symmetries of the stationary Einstein-Maxwell dilaton-axion theory, J. Math. Phys. 36 (1995) 5023 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    M. Rogatko, Stationary axisymmetric axion-dilaton black holes: Mass formulae, Class. Quant. Grav. 11 (1994) 689 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    A. García, D. Galtsov and O. Kechkin, Class of stationary axisymmetric solutions of the Einstein-Maxwell dilaton-axion field equations, Phys. Rev. Lett. 74 (1995) 1276 [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  65. [65]
    M. Rogatko, The Bogomolnyi type bound in axion-dilaton gravity, Class. Quant. Grav. 12 (1995) 3115 [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  66. [66]
    D.V. Galtsov and O.V. Kechkin, U duality and symplectic formulation of dilaton-axion gravity, Phys. Rev. D 54 (1996) 1656 [hep-th/9507005] [SPIRES].MathSciNetADSGoogle Scholar
  67. [67]
    I. Bakas, Solitons of axion-dilaton gravity, Phys. Rev. D 54 (1996) 6424 [hep-th/9605043] [SPIRES].MathSciNetADSGoogle Scholar
  68. [68]
    E. Bergshoeff, R. Kallosh and T. Ortín, Stationary Axion/Dilaton Solutions and Supersymmetry, Nucl. Phys. B 478 (1996) 156 [hep-th/9605059] [SPIRES].ADSCrossRefGoogle Scholar
  69. [69]
    G. Clement and D.V. Galtsov, Stationary BPS solutions to dilaton-axion gravity, Phys. Rev. D 54 (1996) 6136 [hep-th/9607043] [SPIRES].MathSciNetADSGoogle Scholar
  70. [70]
    S. Bellucci, S. Ferrara and A. Marrani, On some properties of the attractor equations, Phys. Lett. B 635 (2006) 172 [hep-th/0602161] [SPIRES].MathSciNetADSGoogle Scholar
  71. [71]
    G.L. Cardoso, V. Grass, D. Lüst and J. Perz, Extremal non-BPS black holes and entropy extremization, JHEP 09 (2006) 078 [hep-th/0607202] [SPIRES].CrossRefGoogle Scholar
  72. [72]
    S. Ferrara and A. Marrani, N = 8 non-BPS Attractors, Fixed Scalars and Magic Supergravities, Nucl. Phys. B 788 (2008) 63 [arXiv:0705.3866] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  73. [73]
    S. Ferrara and A. Marrani, On the Moduli Space of non-BPS Attractors for N = 2 Symmetric Manifolds, Phys. Lett. B 652 (2007) 111 [arXiv:0706.1667] [SPIRES].MathSciNetADSGoogle Scholar
  74. [74]
    R. Kallosh, A.D. Linde, T. Ortín, A.W. Peet and A. Van Proeyen, Supersymmetry as a cosmic censor, Phys. Rev. D 46 (1992) 5278 [hep-th/9205027] [SPIRES].ADSGoogle Scholar
  75. [75]
    M.J. Duff, J.T. Liu and J. Rahmfeld, Four-dimensional string-string-string triality, Nucl. Phys. B 459 (1996) 125 [hep-th/9508094] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  76. [76]
    K. Behrndt, R. Kallosh, J. Rahmfeld, M. Shmakova and W.K. Wong, STU black holes and string triality, Phys. Rev. D 54 (1996) 6293 [hep-th/9608059] [SPIRES].MathSciNetADSGoogle Scholar
  77. [77]
    S. Bellucci, S. Ferrara, A. Marrani and A. Yeranyan, stu Black Holes Unveiled, arXiv:0807.3503 [SPIRES].
  78. [78]
    S. Ferrara and R. Kallosh, On N = 8 attractors, Phys. Rev. D 73 (2006) 125005 [hep-th/0603247] [SPIRES].MathSciNetADSGoogle Scholar
  79. [79]
    M. Shmakova, Calabi-Yau Black Holes, Phys. Rev. D 56 (1997) 540 [hep-th/9612076] [SPIRES].MathSciNetADSGoogle Scholar
  80. [80]
    P. Galli, T. Ortín, J. Perz and C.S. Shahbazi, work in progress.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Pietro Galli
    • 1
  • Tomás Ortín
    • 2
  • Jan Perz
    • 2
  • Carlos S. Shahbazi
    • 2
  1. 1.Departament de Física Teòrica and IFIC (CSIC-UVEG)Universitat de ValènciaBurjassot (València)Spain
  2. 2.Instituto de Física Teórica UAM/CSICMadridSpain

Personalised recommendations