Advertisement

ABJM baryon stability and Myers effect

  • Yolanda Lozano
  • Marco Picos
  • Konstadinos Sfetsos
  • Konstadinos Siampos
Open Access
Article

Abstract

We consider magnetically charged baryon vertex like configurations in AdS 4 × CP 3 with a reduced number of quarks l. We show that these configurations are solutions to the classical equations of motion and are stable beyond a critical value of l. Given that the magnetic flux dissolves D0-brane charge it is possible to give a microscopical description in terms of D0-branes expanding into fuzzy CP n spaces by Myers dielectric effect. Using this description we are able to explore the region of finite ’t Hooft coupling.

Keywords

Gauge-gravity correspondence D-branes Bosonic Strings Space-Time Symmetries 

References

  1. [1]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    E. Witten, Baryons and branes in Anti de Sitter space, JHEP 07 (1998) 006 [hep-th/9805112] [SPIRES].ADSGoogle Scholar
  3. [3]
    S.S. Gubser and I.R. Klebanov, Baryons and domain walls in an N = 1 superconformal gauge theory, Phys. Rev. D 58 (1998) 125025 [hep-th/9808075] [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    D. Berenstein, C.P. Herzog and I.R. Klebanov, Baryon spectra and AdS/CFT correspondence, JHEP 06 (2002) 047 [hep-th/0202150] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    N. Gutierrez, Y. Lozano and D. Rodriguez-Gomez, Charged particle-like branes in ABJM, JHEP 09 (2010) 101 [arXiv:1004.2826] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    S.A. Hartnoll, Anyonic strings and membranes in AdS space and dual Aharonov-Bohm effects, Phys. Rev. Lett. 98 (2007) 111601 [hep-th/0612159] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    S. Kawamoto and F.-L. Lin, Holographic anyons in the ABJM theory, JHEP 02 (2010) 059 [arXiv:0910.5536] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    A. Brandhuber, N. Itzhaki, J. Sonnenschein and S. Yankielowicz, Baryons from supergravity, JHEP 07 (1998) 020 [hep-th/9806158] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    Y. Imamura, Baryon mass and phase transitions in large-N gauge theory, Prog. Theor. Phys. 100 (1998) 1263 [hep-th/9806162] [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    K. Sfetsos and K. Siampos, Stability issues with baryons in AdS/CFT, JHEP 08 (2008) 071 [arXiv:0807.0236] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    Y. Imamura, Supersymmetries and BPS configurations on Anti-de Sitter space, Nucl. Phys. B 537 (1999) 184 [hep-th/9807179] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    C.G. Callan Jr., A. Guijosa and K.G. Savvidy, Baryons and string creation from the fivebrane worldvolume action, Nucl. Phys. B 547 (1999) 127 [hep-th/9810092] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    R.C. Myers, Dielectric-branes, JHEP 12 (1999) 022 [hep-th/9910053] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    O. Aharony, A. Hashimoto, S. Hirano and P. Ouyang, D-brane charges in gravitational duals of 2 + 1 dimensional gauge theories and duality cascades, JHEP 01 (2010) 072 [arXiv:0906.2390] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    D.S. Freed and E. Witten, Anomalies in string theory with D-branes, hep-th/9907189 [SPIRES].
  16. [16]
    J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    M.B. Green, J.A. Harvey and G.W. Moore, I-brane inflow and anomalous couplings on D-branes, Class. Quant. Grav. 14 (1997) 47 [hep-th/9605033] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  18. [18]
    Y.-K.E. Cheung and Z. Yin, Anomalies, branes and currents, Nucl. Phys. B 517 (1998) 69 [hep-th/9710206] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    C.P. Bachas, P. Bain and M.B. Green, Curvature terms in D-brane actions and their M-theory origin, JHEP 05 (1999) 011 [hep-th/9903210] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  21. [21]
    B. Janssen, Y. Lozano and D. Rodriguez-Gomez, The baryon vertex with magnetic flux, JHEP 11 (2006) 082 [hep-th/0606264] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and Anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    B. Baumgartner, H. Grosse and A. Martin, Order of levels in potential models, Nucl. Phys. B 254 (1985) 528 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    C. Bachas, Convexity of the quarkonium potential, Phys. Rev. D 33 (1986) 2723 [SPIRES].ADSGoogle Scholar
  25. [25]
    N. Drukker, J. Plefka and D. Young, Wilson loops in 3-dimensional N = 6 supersymmetric Chern-Simons theory and their string theory duals, JHEP 11 (2008) 019 [arXiv:0809.2787] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    B. Chen and J.-B. Wu, Supersymmetric Wilson loops in N = 6 super Chern-Simons-matter theory, Nucl. Phys. B 825 (2010) 38 [arXiv:0809.2863] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    S.-J. Rey, T. Suyama and S. Yamaguchi, Wilson loops in superconformal Chern-Simons theory and fundamental strings in Anti-de Sitter supergravity dual, JHEP 03 (2009) 127 [arXiv:0809.3786] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    T. Suyama, On large-N solution of ABJM theory, Nucl. Phys. B 834 (2010) 50 [arXiv:0912.1084] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    M. Mariño and P. Putrov, Exact results in ABJM theory from topological strings, JHEP 06 (2010) 011 [arXiv:0912.3074] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    N. Drukker and D. Trancanelli, A supermatrix model for N = 6 super Chern-Simons-matter theory, JHEP 02 (2010) 058 [arXiv:0912.3006] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    R. Emparan, Born-Infeld strings tunneling to D-branes, Phys. Lett. B 423 (1998) 71 [hep-th/9711106] [SPIRES].MathSciNetADSGoogle Scholar
  33. [33]
    S.P. Trivedi and S. Vaidya, Fuzzy cosets and their gravity duals, JHEP 09 (2000) 041 [hep-th/0007011] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    B. Janssen, Y. Lozano and D. Rodriguez-Gomez, Giant gravitons and fuzzy CP(2), Nucl. Phys. B 712 (2005) 371 [hep-th/0411181] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    Y. Lozano and D. Rodriguez-Gomez, Fuzzy 5-spheres and pp-wave matrix actions, JHEP 08 (2005) 044 [hep-th/0505073] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    B. Janssen, Y. Lozano and D. Rodriguez-Gomez, A KK-monopole giant graviton in AdS 5 × Y 5, JHEP 06 (2007) 028 [arXiv:0704.1438] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    Madore, An introduction to noncommutative differential geometry and its applications, Cambridge University Press, Cambridge U.K. (1995).Google Scholar
  38. [38]
    U. Carow-Watamura, H. Steinacker and S. Watamura, Monopole bundles over fuzzy complex projective spaces, J. Geom. Phys. 54 (2005) 373 [hep-th/0404130] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  39. [39]
    B. Janssen and Y. Lozano, A microscopical description of giant gravitons, Nucl. Phys. B 658 (2003) 281 [hep-th/0207199] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    B. Janssen, Y. Lozano and D. Rodriguez-Gomez, A microscopical description of giant gravitons. II: the AdS 5 × S 5 background, Nucl. Phys. B 669 (2003) 363 [hep-th/0303183] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    D. Rodriguez-Gomez, Branes wrapping black holes as a purely gravitational dielectric effect, JHEP 01 (2006) 079 [hep-th/0509228] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    M.R. Garousi and R.C. Myers, World-volume interactions on D-branes, Nucl. Phys. B 542 (1999) 73 [hep-th/9809100] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    T. Eguchi, P.B. Gilkey and A.J. Hanson, Gravitation, gauge theories and differential geometry, Phys. Rept. 66 (1980) 213 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    O. Bergman and S. Hirano, Anomalous radius shift in AdS 4/CFT 3, JHEP 07 (2009) 016 [arXiv:0902.1743] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    K. Becker, G. Guo and D. Robbins, Higher derivative brane couplings from T-duality, JHEP 09 (2010) 029 [arXiv:1007.0441] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    M.R. Garousi, T-duality of anomalous Chern-Simons couplings, arXiv:1007.2118 [SPIRES].
  47. [47]
    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χSB -resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    B.E.W. Nilsson and C.N. Pope, Hopf fibration of eleven-dimensional supergravity, Class. Quant. Grav. 1 (1984) 499 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    C.N. Pope and N.P. Warner, An SU(4) invariant compactification of D = 11 supergravity on a stretched seven sphere, Phys. Lett. B 150 (1985) 352 [SPIRES].MathSciNetADSGoogle Scholar
  50. [50]
    D. Karabali and V.P. Nair, The effective action for edge states in higher dimensional quantum Hall systems, Nucl. Phys. B 679 (2004) 427 [hep-th/0307281] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    Y. Abe, Construction of fuzzy spaces and their applications to matrix models, arXiv:1002.4937 [SPIRES].
  52. [52]
    J.A. de Azcarraga, A.J. Macfarlane, A.J. Mountain and J.C. Perez Bueno, Invariant tensors for simple groups, Nucl. Phys. B 510 (1998) 657 [physics/9706006].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Yolanda Lozano
    • 1
  • Marco Picos
    • 1
  • Konstadinos Sfetsos
    • 2
  • Konstadinos Siampos
    • 3
  1. 1.Department of PhysicsUniversity of OviedoOviedoSpain
  2. 2.Department of Engineering SciencesUniversity of PatrasPatrasGreece
  3. 3.Centre de Physique ThéoriqueEcole Polytechnique, CNRSPalaiseauFrance

Personalised recommendations