Baryon washout, electroweak phase transition, and perturbation theory

  • Hiren H. Patel
  • Michael J. Ramsey-Musolf


We analyze the conventional perturbative treatment of sphaleron-induced baryon number washout relevant for electroweak baryogenesis and show that it is not gauge-independent due to the failure of consistently implementing the Nielsen identities order-byorder in perturbation theory. We provide a gauge-independent criterion for baryon number preservation in place of the conventional (gauge-dependent) criterion needed for successful electroweak baryogenesis. We also review the arguments leading to the preservation criterion and analyze several sources of theoretical uncertainties in obtaining a numerical bound. In various beyond the standard model scenarios, a realistic perturbative treatment will likely require knowledge of the complete two-loop finite temperature effective potential and the one-loop sphaleron rate.


Gauge Symmetry Thermal Field Theory BRST Symmetry 


  1. [1]
    E.H. Fradkin and S.H. Shenker, Phase Diagrams of Lattice Gauge Theories with Higgs Fields, Phys. Rev. D 19 (1979) 3682 [SPIRES].ADSGoogle Scholar
  2. [2]
    J. Ambjorn, T. Askgaard, H. Porter and M.E. Shaposhnikov, Lattice simulations of electroweak sphaleron transitions in real time, Phys. Lett. B 244 (1990) 479 [SPIRES].ADSGoogle Scholar
  3. [3]
    K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, A Nonperturbative analysis of the finite T phase transition in SU(2) × U(1) electroweak theory, Nucl. Phys. B 493 (1997) 413 [hep-lat/9612006] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Is there a hot electroweak phase transition at m(H) larger or equal to m(W)?, Phys. Rev. Lett. 77 (1996) 2887 [hep-ph/9605288] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    F. Csikor, Z. Fodor and J. Heitger, Endpoint of the hot electroweak phase transition, Phys. Rev. Lett. 82 (1999) 21 [hep-ph/9809291] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    Y. Aoki, F. Csikor, Z. Fodor and A. Ukawa, The endpoint of the first-order phase transition of the SU(2) gauge-Higgs model on a 4-dimensional isotropic lattice, Phys. Rev. D 60 (1999) 013001 [hep-lat/9901021] [SPIRES].ADSGoogle Scholar
  7. [7]
    G.D. Moore, Measuring the broken phase sphaleron rate nonperturbatively, Phys. Rev. D 59 (1999) 0144503 [hep-ph/9805264] [SPIRES].ADSGoogle Scholar
  8. [8]
    LEP Working Group for Higgs boson searches collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [SPIRES].Google Scholar
  9. [9]
    M. Quirós, Finite temperature field theory and phase transitions, hep-ph/9901312 [SPIRES].
  10. [10]
    S.J. Huber, P. John and M.G. Schmidt, Bubble walls, CP-violation and electroweak baryogenesis in the MSSM, Eur. Phys. J. C 20 (2001) 695 [hep-ph/0101249] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    M. Carena, G. Nardini, M. Quirós and C.E.M. Wagner, The Baryogenesis Window in the MSSM, Nucl. Phys. B 812 (2009) 243 [arXiv:0809.3760] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    J. Kang, P. Langacker, T.-j. Li and T. Liu, Electroweak baryogenesis in a supersymmetric U(1) -prime model, Phys. Rev. Lett. 94 (2005) 061801 [hep-ph/0402086] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    D.J.H. Chung and A.J. Long, Electroweak Phase Transition in the munuSSM, Phys. Rev. D 81 (2010) 123531 [arXiv:1004.0942] [SPIRES].ADSGoogle Scholar
  14. [14]
    K. Funakubo and E. Senaha, Electroweak phase transition, critical bubbles and sphaleron decoupling condition in the MSSM, Phys. Rev. D 79 (2009) 115024 [arXiv:0905.2022] [SPIRES].ADSGoogle Scholar
  15. [15]
    C.-W. Chiang and E. Senaha, Electroweak phase transitions in the secluded U(1)-prime-extended MSSM, JHEP 06 (2010) 030 [arXiv:0912.5069] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    S. Profumo, M.J. Ramsey-Musolf and G. Shaughnessy, Singlet Higgs Phenomenology and the Electroweak Phase Transition, JHEP 08 (2007) 010 [arXiv:0705.2425] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    S.W. Ham and S.K. Oh, Electroweak phase transition and Higgs self-couplings in the two-Higgs-doublet model, hep-ph/0502116 [SPIRES].
  18. [18]
    S.W. Ham, S.-A. Shim and S.K. Oh, Electroweak phase transition in an extension of the standard model with scalar color octet, Phys. Rev. D 81 (2010) 055015 [arXiv:1002.0237] [SPIRES].ADSGoogle Scholar
  19. [19]
    M. Laine and K. Rummukainen, The MSSM electroweak phase transition on the lattice, Nucl. Phys. B 535 (1998) 423 [hep-lat/9804019] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    F. Csikor et al., Electroweak phase transition in the MSSM: 4-dimensional lattice simulations, Phys. Rev. Lett. 85 (2000) 932 [hep-ph/0001087] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    G.D. Moore and M. Tassler, The Sphaleron Rate in SU(N) Gauge Theory, JHEP 02 (2011) 105 [arXiv:1011.1167] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    H.A. Kramers, Brownian motion in a field of force and the diffusion model of chemical re actions, Physica 7 (1940) 284 [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  23. [23]
    L. Carson, X. Li, L.D. McLerran and R.-T. Wang, Exact Computation Of The Small Fluctuation Determinant Around A Sphaleron, Phys. Rev. D 42 (1990) 2127 [SPIRES].ADSGoogle Scholar
  24. [24]
    J. Baacke and S. Junker, Quantum fluctuations around the electroweak sphaleron, Phys. Rev. D 49 (1994) 2055 [hep-ph/9308310] [SPIRES].ADSGoogle Scholar
  25. [25]
    J. Baacke and S. Junker, Quantum fluctuations of the electroweak sphaleron: Erratum and addendum, Phys. Rev. D 50 (1994) 4227 [hep-th/9402078] [SPIRES].ADSGoogle Scholar
  26. [26]
    L. Dolan and R. Jackiw, Symmetry Behavior at Finite Temperature, Phys. Rev. D 9 (1974) 3320 [SPIRES].ADSGoogle Scholar
  27. [27]
    N.K. Nielsen, On the Gauge Dependence of Spontaneous Symmetry Breaking in Gauge Theories, Nucl. Phys. B 101 (1975) 173 [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    M.E. Shaposhnikov, Baryon Asymmetry of the Universe in Standard Electroweak Theory, Nucl. Phys. B 287 (1987) 757 [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    M. Dine, P. Huet, R.L. Singleton, Jr and L. Susskind, Creating the baryon asymmetry at the electroweak phase transition, Phys. Lett. B 257 (1991) 351 [SPIRES].ADSGoogle Scholar
  30. [30]
    D.J.H. Chung, B. Garbrecht, M.J. Ramsey-Musolf and S. Tulin, Supergauge interactions and electroweak baryogenesis, JHEP 12 (2009) 067 [arXiv:0908.2187] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    S. Weinberg, Perturbative Calculations of Symmetry Breaking, Phys. Rev. D 7 (1973) 2887 [SPIRES].ADSGoogle Scholar
  32. [32]
    R. Jackiw, Functional evaluation of the effective potential, Phys. Rev. D 9 (1974) 1686 [SPIRES].ADSGoogle Scholar
  33. [33]
    L. Dolan and R. Jackiw, Gauge invariant signal for gauge symmetry breaking, Phys. Rev. D 9 (1974) 2904 [SPIRES].ADSGoogle Scholar
  34. [34]
    R. Fukuda and T. Kugo, Gauge Invariance in the Effective Action and Potential, Phys. Rev. D 13 (1976) 3469 [SPIRES].ADSGoogle Scholar
  35. [35]
    C. Delaunay, C. Grojean and J.D. Wells, Dynamics of Non-renormalizable Electroweak Symmetry Breaking, JHEP 04 (2008) 029 [arXiv:0711.2511] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    C.W. Bernard, Feynman Rules for Gauge Theories at Finite Temperature, Phys. Rev. D 9 (1974) 3312 [SPIRES].ADSGoogle Scholar
  37. [37]
    G.W. Anderson and L.J. Hall, The Electroweak phase transition and baryogenesis, Phys. Rev. D 45 (1992) 2685 [SPIRES].ADSGoogle Scholar
  38. [38]
    E. Braaten and R.D. Pisarski, Resummation and Gauge Invariance of the Gluon Damping Rate in Hot QCD, Phys. Rev. Lett. 64 (1990) 1338 [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    G. Thompson and H.-L. Yu, Gauge Covariance Of The Effective Potential, Phys. Rev. D 31 (1985) 2141 [SPIRES].MathSciNetADSGoogle Scholar
  40. [40]
    M. Laine, Gauge dependence of the high temperature two loop effective potential for the Higgs field, Phys. Rev. D 51 (1995) 4525 [hep-ph/9411252] [SPIRES].ADSGoogle Scholar
  41. [41]
    A.D. Linde, Phase Transitions in Gauge Theories and Cosmology, Rept. Prog. Phys. 42 (1979) 389 [SPIRES].ADSCrossRefGoogle Scholar
  42. [42]
    D.J. Gross, R.D. Pisarski and L.G. Yaffe, QCD and Instantons at Finite Temperature, Rev. Mod. Phys. 53 (1981) 43 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    K. Farakos, K. Kajantie, K. Rummukainen and M.E. Shaposhnikov, 3 − D physics and the electroweak phase transition: Perturbation theory, Nucl. Phys. B 425 (1994) 67 [hep-ph/9404201] [SPIRES].ADSCrossRefGoogle Scholar
  44. [44]
    A. Jakovac and A. Patkos, Finite temperature reduction of the SU(2) Higgs model with complete static background, Phys. Lett. B 334 (1994) 391 [hep-ph/9405424] [SPIRES].ADSGoogle Scholar
  45. [45]
    Z. Fodor and A. Hebecker, Finite temperature effective potential to order g 4 , λ2 and the electroweak phase transition, Nucl. Phys. B 432 (1994) 127 [hep-ph/9403219] [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    P.B. Arnold and L.D. McLerran, Sphalerons, Small Fluctuations and Baryon Number Violation in Electroweak Theory, Phys. Rev. D 36 (1987) 581 [SPIRES].ADSGoogle Scholar
  47. [47]
    L. Carson and L.D. McLerran, Approximate computation of the small-fluctuation determinant around a sphaleron, Phys. Rev. D 41 (1990) 647 [SPIRES].ADSGoogle Scholar
  48. [48]
    F.R. Klinkhamer and N.S. Manton, A Saddle Point Solution in the Weinberg-Salam Theory, Phys. Rev. D 30 (1984) 2212 [SPIRES].ADSGoogle Scholar
  49. [49]
    A. Strumia and N. Tetradis, A consistent calculation of bubble-nucleation rates, Nucl. Phys. B 542 (1999) 719 [hep-ph/9806453] [SPIRES].ADSCrossRefGoogle Scholar
  50. [50]
    V. Cirigliano, Y. Li, S. Profumo and M.J. Ramsey-Musolf, MSSM Baryogenesis and Electric Dipole Moments: An Update on the Phenomenology, JHEP 01 (2010) 002 [arXiv:0910.4589] [SPIRES].ADSCrossRefGoogle Scholar
  51. [51]
    F. Csikor, Z. Fodor and J. Heitger, Where does the hot electroweak phase transition end?, Nucl. Phys. Proc. Suppl. 73 (1999) 659 [hep-ph/9809293] [SPIRES].ADSMATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Wisconsin-MadisonMadisonU.S.A.
  2. 2.Kellogg Radiation LaboratoryCalifornia Institute of TechnologyPasadenaU.S.A.

Personalised recommendations