Light neutralino in the MSSM: a playground for dark matter, flavor physics and collider experiments

  • Lorenzo Calibbi
  • Toshihiko Ota
  • Yasutaka Takanishi


We investigate the constraints to the light neutralino dark matter scenario in the minimal supersymmetric standard model from available experimental observations such as decays of B and K meson, relic dark matter abundance, and the search for neutralino and Higgs production at colliders. We find that two regions of the MSSM parameter space fulfill all the constraints: a fine-tuned strip with large tanβ where the lightest neutralino can be a slight as 8 GeV, and alow tanβ region providing a neutralino mass larger than 16 GeV. The large tan β strip, which can be compatible with recently reported signals from direct detection experiments, can be fully tested by means of low-energy observables and, in particular, by B s  → μμ and Higgs bosons searches at the LHC within the upcoming months.


Rare Decays Beyond Standard Model Supersymmetric Standard Model 


  1. [1]
    WMAP collaboration, J. Dunkley et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: likelihoods and parameters from the WMAP data, Astrophys. J. Suppl. 180 (2009) 306 [arXiv:0803.0586] [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    J. Kopp, T. Schwetz and J. Zupan, Global interpretation of direct dark matter searches after CDMS-II results, JCAP 02 (2010) 014 [arXiv:0912.4264] [SPIRES].ADSGoogle Scholar
  4. [4]
    M. Regis, Particle dark matter: the state of the art, arXiv:1008.0506 [SPIRES].
  5. [5]
    T. Schwetz, Direct detection data and possible hints for low-mass WIMPs, arXiv:1011.5432 [SPIRES].
  6. [6]
    DAMA collaboration, R. Bernabei et al., First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J. C 56 (2008) 333 [arXiv:0804.2741] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    R. Bernabei et al., New results from DAMA/LIBRA, Eur. Phys. J. C 67 (2010) 39 [arXiv:1002.1028] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    CoGeNT collaboration, C.E. Aalseth et al., Results from a search for light-mass dark matter with a P-type point contact Germanium detector, Phys. Rev. Lett. 106 (2011) 131301 [arXiv:1002.4703] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    CRESST collaboration, J. Schmaler, Results from the CRESST dark matter search, talk given at DPG, Karlsruhe Germany, 28 March–1 April 2011.Google Scholar
  10. [10]
    D. Hooper, J.I. Collar, J. Hall and D. McKinsey, A consistent dark matter interpretation for CoGeNT and DAMA/LIBRA, Phys. Rev. D 82 (2010) 123509 [arXiv:1007.1005] [SPIRES].ADSGoogle Scholar
  11. [11]
    E. Kuflik, A. Pierce and K.M. Zurek, Light neutralinos with large scattering cross sections in the minimal supersymmetric standard model, Phys. Rev. D 81 (2010) 111701 [arXiv:1003.0682] [SPIRES].ADSGoogle Scholar
  12. [12]
    D. Feldman, Z. Liu and P. Nath, Low mass neutralino dark matter in the MSSM with constraints from B s → μ+μ and Higgs search limits, Phys. Rev. D 81 (2010) 117701 [arXiv:1003.0437] [SPIRES].ADSGoogle Scholar
  13. [13]
    D.A. Vasquez, G. Bélanger, C. Boehm, A. Pukhov and J. Silk, Can neutralinos in the MSSM and NMSSM scenarios still be light?, Phys. Rev. D 82 (2010) 115027 [arXiv:1009.4380] [SPIRES].ADSGoogle Scholar
  14. [14]
    N. Fornengo, S. Scopel and A. Bottino, Discussing direct search of dark matter particles in the minimal supersymmetric extension of the standard model with light neutralinos, Phys. Rev. D 83 (2011) 015001 [arXiv:1011.4743] [SPIRES].ADSGoogle Scholar
  15. [15]
    D. Hooper and T. Plehn, Supersymmetric dark matter: how light can the LSP be?, Phys. Lett. B 562 (2003) 18 [hep-ph/0212226] [SPIRES].ADSGoogle Scholar
  16. [16]
    H.K. Dreiner et al., Mass bounds on a very light neutralino, Eur. Phys. J. C 62 (2009) 547 [arXiv:0901.3485] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    D. Das and U. Ellwanger, Light dark matter in the NMSSM: upper bounds on direct detection cross sections, JHEP 09 (2010) 085 [arXiv:1007.1151] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    J.F. Gunion, A.V. Belikov and D. Hooper, CoGeNT, DAMA and neutralino dark matter in the next-to-minimal supersymmetric standard model, arXiv:1009.2555 [SPIRES].
  19. [19]
    P. Draper, T. Liu, C.E.M. Wagner, L.-T. Wang and H. Zhang, Dark light Higgs, Phys. Rev. Lett. 106 (2011) 121805 [arXiv:1009.3963] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    R. Kappl, M. Ratz and M.W. Winkler, Light dark matter in the singlet-extended MSSM, Phys. Lett. B 695 (2011) 169 [arXiv:1010.0553] [SPIRES].ADSGoogle Scholar
  21. [21]
    A. Bottino, N. Fornengo and S. Scopel, Light relic neutralinos, Phys. Rev. D 67 (2003) 063519 [hep-ph/0212379] [SPIRES].ADSGoogle Scholar
  22. [22]
    A. Bottino, F. Donato, N. Fornengo and S. Scopel, Indirect signals from light neutralinos in supersymmetric models without gaugino mass unification, Phys. Rev. D 70 (2004) 015005 [hep-ph/ 0401186] [SPIRES].ADSGoogle Scholar
  23. [23]
    A. Bottino, F. Donato, N. Fornengo and S. Scopel, Interpreting the recent results on direct search for dark matter particles in terms of relic neutralino, Phys. Rev. D 78 (2008) 083520 [arXiv:0806.4099] [SPIRES].ADSGoogle Scholar
  24. [24]
    A.J. Buras, P.H. Chankowski, J. Rosiek and Ł. Sławianowska, ∆M d,s, B 0 d,s → μ+μ- and BX sγ in supersymmetry at large tanβ, Nucl. Phys. B 659 (2003) 3 [hep-ph/0210145] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    G. Isidori and P. Paradisi, Hints of large tanβ in flavour physics, Phys. Lett. B 639 (2006) 499 [hep-ph/0605012] [SPIRES].ADSGoogle Scholar
  26. [26]
    G. Barenboim, P. Paradisi, O. Vives, E. Lunghi and W. Porod, Light charged Higgs at the beginning of the LHC era, JHEP 04 (2008) 079 [arXiv:0712.3559] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    D. Eriksson, F. Mahmoudi and O. Stål, Charged Higgs bosons in minimal supersymmetry: updated constraints and experimental prospects, JHEP 11 (2008) 035 [arXiv:0808.3551] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi and D.M. Straub, Anatomy and phenomenology of FCNC and CPV effects in SUSY theories, Nucl. Phys. B 830 (2010) 17 [arXiv:0909.1333] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    W. Altmannshofer and D.M. Straub, Viability of MSSM scenarios at very large tanβ, JHEP 09 (2010) 078 [arXiv:1004.1993] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    W.-S. Hou, Enhanced charged Higgs boson effects in B → τν¯, μν¯and b → τν¯+ X, Phys. Rev. D 48 (1993) 2342 [SPIRES].ADSGoogle Scholar
  31. [31]
    A.G. Akeroyd and S. Recksiegel, The effect of H ± on B ±→ τ± ν τ and B ± → μ± ν μ, J. Phys. G 29 (2003) 2311 [hep-ph/0306037] [SPIRES].ADSGoogle Scholar
  32. [32]
    FlaviaNet Working Group on Kaon Decays collaboration, M. Antonelli et al., Precision tests of the standard model with leptonic and semileptonic kaon decays, arXiv:0801.1817 [SPIRES].
  33. [33]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].ADSGoogle Scholar
  34. [34]
    J.F. Kamenik and F. Mescia, B → Dτν branching ratios: opportunity for lattice QCD and hadron colliders, Phys. Rev. D 78 (2008) 014003 [arXiv:0802.3790] [SPIRES].ADSGoogle Scholar
  35. [35]
    A.G. Akeroyd and F. Mahmoudi, Constraints on charged Higgs bosons from D s ± → μ ± ν and D s ± → τ ± ν, JHEP 04 (2009) 121 [arXiv:0902.2393] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    M. Antonelli et al., An evaluation of |V us| and precise tests of the standard model from world data on leptonic and semileptonic kaon decays, Eur. Phys. J. C 69 (2010) 399 [arXiv:1005.2323] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    BABAR collaboration, B. Aubert et al., Observation of the semileptonic decays \( B \to {D^*}{\tau^{-} }{\overline \nu_\tau } \) and evidence for \( B \to D{\tau^{-} }{\overline \nu_\tau } \), Phys. Rev. Lett. 100 (2008) 021801 [arXiv:0709.1698] [SPIRES].ADSCrossRefGoogle Scholar
  38. [38]
    CLEO collaboration, P.U.E. Onyisi et al., Improved measurement of absolute branching fraction of D s +τ + ντ, Phys. Rev. D 79 (2009) 052002 [arXiv:0901.1147] [SPIRES].ADSGoogle Scholar
  39. [39]
    CLEO collaboration, J.P. Alexander et al., Measurement of B (D s + → ℓ+ ν) and the decay constant \( {f_{D_s^{+} }} \) from 600pb −1 of e + e annihilation data near 4170MeV, Phys. Rev. D 79 (2009) 052001 [arXiv:0901.1216] [SPIRES].ADSGoogle Scholar
  40. [40]
    F. Mahmoudi, J. Rathsman, O. Stål and L. Zeune, Light Higgs bosons in phenomenological NMSSM, Eur. Phys. J. C 71 (2011) 1608 [arXiv:1012.4490] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    S. Bertolini, F. Borzumati, A. Masiero and G. Ridolfi, Effects of supergravity induced electroweak breaking on rare B decays and mixings, Nucl. Phys. B 353 (1991) 591 [SPIRES].ADSCrossRefGoogle Scholar
  42. [42]
    M. Ciuchini, G. Degrassi, P. Gambino and G.F. Giudice, Next-to-leading QCD corrections to BX sγ: standard model and two-Higgs doublet model, Nucl. Phys. B 527 (1998) 21 [hep-ph/9710335] [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    R. Barbieri and G.F. Giudice, bsγ decay and supersymmetry, Phys. Lett. B 309 (1993) 86 [hep-ph/9303270] [SPIRES].ADSGoogle Scholar
  44. [44]
    Y. Okada, Light stop and the bsγ process, Phys. Lett. B 315 (1993) 119 [hep-ph/9307249] [SPIRES].ADSGoogle Scholar
  45. [45]
    R. Garisto and J.N. Ng, Supersymmetric bsγ with large chargino contributions, Phys. Lett. B 315 (1993) 372 [hep-ph/9307301] [SPIRES].ADSGoogle Scholar
  46. [46]
    M. Ciuchini, G. Degrassi, P. Gambino and G.F. Giudice, Next-to-leading QCD corrections to BX sγ in supersymmetry, Nucl. Phys. B 534 (1998) 3 [hep-ph/9806308] [SPIRES].ADSGoogle Scholar
  47. [47]
    M.S. Carena, D. Garcia, U. Nierste and C.E.M. Wagner, bsγ and supersymmetry with large tanβ, Phys. Lett. B 499 (2001) 141 [hep-ph/0010003] [SPIRES].ADSGoogle Scholar
  48. [48]
    G. Degrassi, P. Gambino and G.F. Giudice, BX sγ in supersymmetry: large contributions beyond the leading order, JHEP 12 (2000) 009 [hep-ph/0009337] [SPIRES].ADSCrossRefGoogle Scholar
  49. [49]
    G. Bélanger, M. Kakizaki, E.K. Park, S. Kraml and A. Pukhov, Light mixed sneutrinos as thermal dark matter, JCAP 11 (2010) 017 [arXiv:1008.0580] [SPIRES].Google Scholar
  50. [50]
    ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [SPIRES].ADSGoogle Scholar
  51. [51]
    OPAL collaboration, G. Abbiendi et al., Search for chargino and neutralino production at \( \sqrt {s} = 192 \) GeV to 209GeV at LEP, Eur. Phys. J. C 35 (2004) 1 [hep-ex/0401026] [SPIRES].ADSGoogle Scholar
  52. [52]
    Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of b-hadron and c-hadron properties at the end of 2007, arXiv:0808.1297 [SPIRES].
  53. [53]
    D0 collaboration, V.M. Abazov et al., Search for the rare decay B s 0μ + μ , Phys. Lett. B 693 (2010) 539 [arXiv:1006.3469] [SPIRES].ADSGoogle Scholar
  54. [54]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [SPIRES].ADSMATHCrossRefGoogle Scholar
  55. [55]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [SPIRES].ADSMATHCrossRefGoogle Scholar
  56. [56]
    G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [SPIRES].ADSMATHCrossRefGoogle Scholar
  57. [57]
    F. Mahmoudi, SuperIso v2.3: a program for calculating flavor physics observables in supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [arXiv:0808.3144] [SPIRES].ADSCrossRefGoogle Scholar
  58. [58]
    J.R. Ellis, J.M. Frère, J.S. Hagelin, G.L. Kane and S.T. Petcov, Search for neutral gauge fermions in e + e annihilation, Phys. Lett. B 132 (1983) 436 [SPIRES].ADSGoogle Scholar
  59. [59]
    A. Bartl, H. Fraas and W. Majerotto, Production and decay of neutralinos in e + e annihilation, Nucl. Phys. B 278 (1986) 1 [SPIRES].ADSCrossRefGoogle Scholar
  60. [60]
    R. Barbieri, G. Gamberini, G.F. Giudice and G. Ridolfi, Neutralino production at (and close to) the Z0 peak, Phys. Lett. B 195 (1987) 500 [SPIRES].ADSGoogle Scholar
  61. [61]
    S. Heinemeyer, W. Hollik, A.M. Weber and G. Weiglein, Z pole observables in the MSSM, JHEP 04 (2008) 039 [arXiv:0710.2972] [SPIRES].ADSCrossRefGoogle Scholar
  62. [62]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [SPIRES].ADSCrossRefGoogle Scholar
  63. [63]
    ALEPH, DELPHI, L3, OPAL and LEP Working Group for Higgs Boson Searches collaborations, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [SPIRES].ADSCrossRefGoogle Scholar
  64. [64]
    CMS collaboration, The CMS physics reach for searches at 7TeV, public note CMS-NOTE-2010-008.Google Scholar
  65. [65]
    Tevatron New Phenomena & Higgs Working Group collaboration, D. Benjamin et al., Combined CDF and D0 upper limits on MSSM Higgs boson production in tau-tau final states with up to 2.2fb −1 , arXiv:1003.3363 [SPIRES].
  66. [66]
    CMS collaboration, V. Khachatryan et al., Search for supersymmetry in pp collisions at 7TeV in events with jets and missing transverse energy, Phys. Lett. B 698 (2011) 196 [arXiv:1101.1628] [SPIRES].ADSGoogle Scholar
  67. [67]
    ATLAS collaboration, J.B.G. da Costa et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7 \) TeV proton-proton collisions, arXiv:1102.5290 [SPIRES].
  68. [68]
    S. Scopel, S. Choi, N. Fornengo and A. Bottino, Impact of the recent results by the CMS and ATLAS collaborations at the CERN Large Hadron Collider on an effective minimal supersymmetric extension of the standard model, Phys. Rev. D 83 (2011) 095016 [arXiv:1102.4033] [SPIRES].ADSGoogle Scholar
  69. [69]
    CDF collaboration, T. Aaltonen et al., Search for B s 0 → μ + μ and B d 0 → μ + μ decays in 3.7fb −1 of \( p\overline p \) collisions with CDF II, CDF public note 9892 (2009).Google Scholar
  70. [70]
    the LHCb collaboration, R. Aaij et al., Search for the rare decays B s 0μ + μ and B 0μ + μ , Phys. Lett. B 699 (2011) 330 [arXiv:1103.2465] [SPIRES].ADSGoogle Scholar
  71. [71]
    F. Jegerlehner and R. Szafron, ρ 0 − γ mixing in the neutral channel pion form factor F π (e)(s) and its role in comparing e + e with τ spectral functions, Eur. Phys. J. C 71 (2011) 1632 [arXiv:1101.2872] [SPIRES].ADSCrossRefGoogle Scholar
  72. [72]
    The CDMS-II collaboration, Z. Ahmed et al., Dark matter search results from the CDMS II experiment, Science 327 (2010) 1619 [arXiv:0912.3592] [SPIRES].ADSCrossRefGoogle Scholar
  73. [73]
    XENON10 collaboration, J. Angle et al., Constraints on inelastic dark matter from XENON10, Phys. Rev. D 80 (2009) 115005 [arXiv:0910.3698] [SPIRES].ADSGoogle Scholar
  74. [74]
    CDMS-II collaboration, Z. Ahmed et al., Results from a low-energy analysis of the CDMS II Germanium data, Phys. Rev. Lett. 106 (2011) 131302 [arXiv:1011.2482] [SPIRES].ADSCrossRefGoogle Scholar
  75. [75]
    XENON100 collaboration, E. Aprile et al., First dark matter results from the XENON100 experiment, Phys. Rev. Lett. 105 (2010) 131302 [arXiv:1005.0380] [SPIRES].ADSCrossRefGoogle Scholar
  76. [76]
    XENON100 collaboration, E. Aprile et al., Likelihood approach to the first dark matter results from XENON100, arXiv:1103.0303 [SPIRES].
  77. [77]
    CMS collaboration, S. Chatrchyan et al., Search for neutral MSSM Higgs bosons decaying to tau pairs in pp collisions at \( \sqrt {s} = 7 \) TeV, arXiv:1104.1619 [SPIRES].
  78. [78]
    J. Baglio, The supersymmetric Higgs bounds at the Tevatron and the LHC, arXiv:1105.1085 [SPIRES].
  79. [79]
    A. Djouadi, Implications of the first supersymmetric Higgs searches at the LHC, talk given at Planck 2011 conference, Lisbon Portugal, 30 May–3 June 2011.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Lorenzo Calibbi
    • 1
  • Toshihiko Ota
    • 1
  • Yasutaka Takanishi
    • 2
  1. 1.Max-Planck-Institute für Physik (Werner-Heisenberg-Institute)MünchenGermany
  2. 2.Physik-DepartmentTechnische Universität MünchenGarchingGermany

Personalised recommendations