Advertisement

Notes on supersymmetric Wilson loops on a two-sphere

  • Simone Giombi
  • Vasily Pestun
  • Riccardo Ricci
Article

Abstract

We study a recently discovered family of 1/8-BPS supersymmetric Wilson loops in \( \mathcal{N} = 4 \) super Yang-Mills theory and their string theory duals. The operators are defined for arbitrary contours on a two-sphere in space-time, and they were conjectured to be captured perturbatively by 2d bosonic Yang-Mills theory. In the AdS dual, they are described by pseudo-holomorphic string surfaces living on a certain submanifold of AdS 5 × S 5. We show that the regularized area of these string surfaces is invariant under area preserving diffeomorphisms of the boundary loop, in agreement with the conjecture. Further, we find a connection between the pseudo-holomorphicity equations and an auxiliary σ-model on S 3, which may help to construct new 1/8-BPS string solutions. We also show that the conjectured relation to 2d Yang-Mills implies that a connected correlator of two Wilson loops is computed by a Hermitian Gaussian two-matrix model. On the AdS dual side, we argue that the connected correlator is described by two disconnected disks interacting through the exchange of supergravity modes, and we show that this agrees with the strong coupling planar limit of the two-matrix model.

Keywords

Supersymmetric gauge theory Field Theories in Lower Dimensions AdS-CFT Correspondence 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].MATHMathSciNetADSGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MATHMathSciNetGoogle Scholar
  4. [4]
    J.A. Minahan and K. Zarembo, The Bethe-ansatz for N = 4 super Yang-Mills, JHEP 03 (2003) 013 [hep-th/0212208] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    N. Beisert, C. Kristjansen and M. Staudacher, The dilatation operator of N = 4 super Yang-Mills theory, Nucl. Phys. B 664 (2003) 131 [hep-th/0303060] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    N. Beisert, The dilatation operator of N = 4 super Yang-Mills theory and integrability, Phys. Rept. 405 (2005) 1 [hep-th/0407277] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    B. Eden and M. Staudacher, Integrability and transcendentality, J. Stat. Mech. (2006) P11014 [hep-th/0603157] [SPIRES].
  8. [8]
    N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. (2007) P01021 [hep-th/0610251] [SPIRES].
  9. [9]
    L. Freyhult, A. Rej and M. Staudacher, A generalized scaling function for AdS/CFT, J. Stat. Mech. (2008) P07015 [arXiv:0712.2743] [SPIRES].
  10. [10]
    J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    N. Drukker and D.J. Gross, An exact prediction of N = 4 SUSY M theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  12. [12]
    G.W. Semenoff and K. Zarembo, More exact predictions of SUSYM for string theory, Nucl. Phys. B 616 (2001) 34 [hep-th/0106015] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, arXiv:0712.2824 [SPIRES].
  14. [14]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, More supersymmetric Wilson loops, Phys. Rev. D 76 (2007) 107703 [arXiv:0704.2237] [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Supersymmetric Wilson loops on S 3, JHEP 05 (2008) 017 [arXiv:0711.3226] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Wilson loops: from four-dimensional SYM to two-dimensional YM, Phys. Rev. D 77 (2008) 047901 [arXiv:0707.2699] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    A. Bassetto, S. Nicoli and F. Vian, Topological contributions in two-dimensional Yang-Mills theory: from group averages to integration over algebras, Lett. Math. Phys. 57 (2001) 97 [hep-th/0101052] [SPIRES].MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    A. Bassetto, L. Griguolo and F. Vian, Instanton contributions to Wilson loops with general winding number in two dimensions and the spectral density, Nucl. Phys. B 559 (1999) 563 [hep-th/9906125] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    A. Bassetto and L. Griguolo, Two-dimensional QCD, instanton contributions and the perturbative Wu-Mandelstam-Leibbrandt prescription, Phys. Lett. B 443 (1998) 325 [hep-th/9806037] [SPIRES].ADSGoogle Scholar
  20. [20]
    A. Bassetto, L. Griguolo, F. Pucci and D. Seminara, Supersymmetric Wilson loops at two loops, JHEP 06 (2008) 083 [arXiv:0804.3973] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    D. Young, BPS Wilson loops on S 2 at higher loops, JHEP 05 (2008) 077 [arXiv:0804.4098] [SPIRES]. CrossRefADSGoogle Scholar
  22. [22]
    V. Pestun, Wilson loops in supersymmetric gauge theories, Ph.D. thesis, Princeton University, Princeton U.S.A. (2008).Google Scholar
  23. [23]
    V. Pestun, Localization of the four-dimensional N = 4 SYM to a two-sphere and 1/8 BPS Wilson loops, arXiv:0906.0638 [SPIRES].
  24. [24]
    N. Drukker and B. Fiol, All-genus calculation of Wilson loops using D-branes, JHEP 02 (2005) 010 [hep-th/0501109] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    J. Gomis and F. Passerini, Holographic Wilson loops, JHEP 08 (2006) 074 [hep-th/0604007] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    S. Yamaguchi, Wilson loops of anti-symmetric representation and D5-branes, JHEP 05 (2006) 037 [hep-th/0603208] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    S. Giombi, R. Ricci and D. Trancanelli, Operator product expansion of higher rank Wilson loops from D-branes and matrix models, JHEP 10 (2006) 045 [hep-th/0608077] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, On the D3-brane description of some 1/4 BPS Wilson loops, JHEP 04 (2007) 008 [hep-th/0612168] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    T. Okuda, A prediction for bubbling geometries, JHEP 01 (2008) 003 [arXiv:0708.3393] [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    T. Okuda and D. Trancanelli, Spectral curves, emergent geometry and bubbling solutions for Wilson loops, JHEP 09 (2008) 050 [arXiv:0806.4191] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    J. Gomis, S. Matsuura, T. Okuda and D. Trancanelli, Wilson loop correlators at strong coupling: from matrices to bubbling geometries, JHEP 08 (2008) 068 [arXiv:0807.3330] [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  33. [33]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    K. Pohlmeyer, Integrable hamiltonian systems and interactions through quadratic constraints, Commun. Math. Phys. 46 (1976) 207 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    N. Drukker, 1/4 BPS circular loops, unstable world-sheet instantons and the matrix model, JHEP 09 (2006) 004 [hep-th/0605151] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    A.A. Migdal, Gauge transitions in gauge and spin lattice systems, Sov. Phys. JETP 42 (1975) 743 [Zh. Eksp. Teor. Fiz. 69 (1975) 1457] [SPIRES]. ADSGoogle Scholar
  37. [37]
    V.A. Kazakov and I.K. Kostov, Nonlinear strings in two-dimensional u(infinity) gauge theory, Nucl. Phys. B 176 (1980) 199 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  38. [38]
    V.A. Kazakov and I.K. Kostov, Computation of the Wilson loop functional in two-dimensional u(infinite) lattice gauge theory, Phys. Lett. B 105 (1981) 453 [SPIRES].ADSGoogle Scholar
  39. [39]
    B.E. Rusakov, Loop averages and partition functions in U(N) gauge theory on two-dimensional manifolds, Mod. Phys. Lett. A 5 (1990) 693 [SPIRES].MathSciNetADSGoogle Scholar
  40. [40]
    M. Blau and G. Thompson, Lectures on 2 − D gauge theories: topological aspects and path integral techniques, hep-th/9310144 [SPIRES].
  41. [41]
    M. Blau and G. Thompson, Quantum Yang-Mills theory on arbitrary surfaces, Int. J. Mod. Phys. A 7 (1992) 3781 [SPIRES].MathSciNetADSGoogle Scholar
  42. [42]
    L. Gross, C. King and A. Sengupta, Two-dimensional Yang-Mills theory via stochastic differential equations, Annals Phys. 194 (1989) 65 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  43. [43]
    D.S. Fine, Quantum Yang-Mills on the two-sphere, Commun. Math. Phys. 134 (1990) 273 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  44. [44]
    E. Witten, On quantum gauge theories in two-dimensions, Commun. Math. Phys. 141 (1991) 153 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  45. [45]
    A. Gorsky and N. Nekrasov, Hamiltonian systems of Calogero type and two-dimensional Yang-Mills theory, Nucl. Phys. B 414 (1994) 213 [hep-th/9304047] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  46. [46]
    D.J. Gross and A. Matytsin, Some properties of large-N two-dimensional Yang-Mills theory, Nucl. Phys. B 437 (1995) 541 [hep-th/9410054] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  47. [47]
    V. Branding and N. Drukker, BPS Wilson loops in N = 4 SYM: examples on hyperbolic submanifolds of space-time, Phys. Rev. D 79 (2009) 106006 [arXiv:0902.4586] [SPIRES].MathSciNetADSGoogle Scholar
  48. [48]
    J. Gutowski and G. Papadopoulos, AdS calibrations, Phys. Lett. B 462 (1999) 81 [hep-th/9902034] [SPIRES].MathSciNetADSGoogle Scholar
  49. [49]
    N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60 (1999) 125006 [hep-th/9904191] [SPIRES].MathSciNetADSGoogle Scholar
  50. [50]
    K. Zarembo, Supersymmetric Wilson loops, Nucl. Phys. B 643 (2002) 157 [hep-th/0205160] [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  51. [51]
    A. Dymarsky, S.S. Gubser, Z. Guralnik and J.M. Maldacena, Calibrated surfaces and supersymmetric Wilson loops, JHEP 09 (2006) 057 [hep-th/0604058] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  52. [52]
    I.R. Klebanov, J.M. Maldacena and C.B. Thorn, III, Dynamics of flux tubes in large-N gauge theories, JHEP 04 (2006) 024 [hep-th/0602255] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  53. [53]
    N. Drukker, D.J. Gross and A.A. Tseytlin, Green-Schwarz string in AdS 5 × S 5: semiclassical partition function, JHEP 04 (2000) 021 [hep-th/0001204] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  54. [54]
    M. Beccaria, G.V. Dunne, V. Forini, M. Pawellek and A.A. Tseytlin, Exact computation of one-loop correction to energy of spinning folded string in AdS 5 × S 5, J. Phys. A 43 (2010) 165402 [arXiv:1001.4018] [SPIRES].ADSGoogle Scholar
  55. [55]
    S. Frolov and A.A. Tseytlin, Semiclassical quantization of rotating superstring in AdS 5 × S 5, JHEP 06 (2002) 007 [hep-th/0204226] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  56. [56]
    M. Kruczenski and A. Tirziu, Matching the circular Wilson loop with dual open string solution at 1-loop in strong coupling, JHEP 05 (2008) 064 [arXiv:0803.0315] [SPIRES].CrossRefMathSciNetGoogle Scholar
  57. [57]
    N. Drukker, private communication.Google Scholar
  58. [58]
    N. Drukker and B. Fiol, On the integrability of Wilson loops in AdS 5 × S 5 : Some periodic ansatze, JHEP 01 (2006) 056 [hep-th/0506058] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  59. [59]
    D.J. Gross and H. Ooguri, Aspects of large-N gauge theory dynamics as seen by string theory, Phys. Rev. D 58 (1998) 106002 [hep-th/9805129] [SPIRES].MathSciNetADSGoogle Scholar
  60. [60]
    K. Zarembo, Wilson loop correlator in the AdS/CFT correspondence, Phys. Lett. B 459 (1999) 527 [hep-th/9904149] [SPIRES].MathSciNetADSGoogle Scholar
  61. [61]
    P. Olesen and K. Zarembo, Phase transition in Wilson loop correlator from AdS/CFT correspondence, hep-th/0009210 [SPIRES].
  62. [62]
    M. Staudacher and W. Krauth, Two-dimensional QCD in the Wu-Mandelstam-Leibbrandt prescription, Phys. Rev. D 57 (1998) 2456 [hep-th/9709101] [SPIRES].ADSGoogle Scholar
  63. [63]
    G. Akemann and P.H. Damgaard, Wilson loops in N = 4 supersymmetric Yang-Mills theory from random matrix theory, Phys. Lett. B 513 (2001) 179 [Erratum ibid. B 524 (2002) 400] [hep-th/0101225] [SPIRES].MathSciNetADSGoogle Scholar
  64. [64]
    S. Kawamoto, T. Kuroki and A. Miwa, Boundary condition for D-brane from Wilson loop and gravitational interpretation of eigenvalue in matrix model in AdS/CFT correspondence, Phys. Rev. D 79 (2009) 126010 [arXiv:0812.4229] [SPIRES].ADSGoogle Scholar
  65. [65]
    J. Ambjørn, L. Chekhov, C.F. Kristjansen and Y. Makeenko, Matrix model calculations beyond the spherical limit, Nucl. Phys. B 404 (1993) 127 [Erratum ibid. B 449 (1995) 681] [hep-th/9302014] [SPIRES].CrossRefADSGoogle Scholar
  66. [66]
    A.S. Alexandrov, A. Mironov and A. Morozov, Partition functions of matrix models as the first special functions of string theory. I: Finite size Hermitean 1-matrix model, Int. J. Mod. Phys. A 19 (2004) 4127 [Teor. Mat. Fiz. 142 (2005) 419] [hep-th/0310113] [SPIRES]. MathSciNetADSGoogle Scholar
  67. [67]
    J. Ambjørn, J. Jurkiewicz and Y.M. Makeenko, Multiloop correlators for two-dimensional quantum gravity, Phys. Lett. B 251 (1990) 517 [SPIRES]. ADSGoogle Scholar
  68. [68]
    G.E. Andrews, R. Askey, and R. Roy, Special functions, Encyclopedia of mathematics and its applications. Vol. 71 (1999).Google Scholar
  69. [69]
    E. Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992) 303 [hep-th/9204083] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  70. [70]
    B. Eynard, Eigenvalue distribution of large random matrices, from one matrix to several coupled matrices, Nucl. Phys. B 506 (1997) 633 [cond-mat/9707005] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  71. [71]
    J.M. Daul, V.A. Kazakov and I.K. Kostov, Rational theories of 2 − D gravity from the two matrix model, Nucl. Phys. B 409 (1993) 311 [hep-th/9303093] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  72. [72]
    F. Lund and T. Regge, Unified approach to strings and vortices with soliton solutions, Phys. Rev. D 14 (1976) 1524 [SPIRES].MathSciNetADSGoogle Scholar
  73. [73]
    K. Pohlmeyer and K.-H. Rehren, Reduction of the two-dimensional O(n) nonlinear σ-model, J. Math. Phys. 20 (1979) 2628 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  74. [74]
    B.S. Getmanov, Integrable two-dimensional Lorentz invariant nonlinear model of complex scalar field (complex sine-Gordon II), Theor. Math. Phys. 48 (1982) 572 [Teor. Mat. Fiz. 48 (1981) 13] [SPIRES].CrossRefGoogle Scholar
  75. [75]
    H.-Y. Chen, N. Dorey and K. Okamura, Dyonic giant magnons, JHEP 09 (2006) 024 [hep-th/0605155] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  76. [76]
    H. Hayashi, K. Okamura, R. Suzuki and B. Vicedo, Large winding sector of AdS/CFT, JHEP 11 (2007) 033 [arXiv:0709.4033] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  77. [77]
    M. Grigoriev and A.A. Tseytlin, Pohlmeyer reduction of AdS 5 × S 5 superstring σ-model, Nucl. Phys. B 800 (2008) 450 [arXiv:0711.0155] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  78. [78]
    A. Mikhailov and S. Schäfer-Nameki, Sine-Gordon-like action for the Superstring in AdS 5 × S 5, JHEP 05 (2008) 075 [arXiv:0711.0195] [SPIRES].CrossRefADSGoogle Scholar
  79. [79]
    A. Jevicki, K. Jin, C. Kalousios and A. Volovich, Generating AdS String Solutions, JHEP 03 (2008) 032 [arXiv:0712.1193] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  80. [80]
    T. Klose and T. McLoughlin, Interacting finite-size magnons, J. Phys. A 41 (2008) 285401 [arXiv:0803.2324] [SPIRES].MathSciNetGoogle Scholar
  81. [81]
    M. Grigoriev and A.A. Tseytlin, On reduced models for superstrings on AdS n × S n, Int. J. Mod. Phys. A 23 (2008) 2107 [arXiv:0806.2623] [SPIRES].MathSciNetADSGoogle Scholar
  82. [82]
    J.L. Miramontes, Pohlmeyer reduction revisited, JHEP 10 (2008) 087 [arXiv:0808.3365] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  83. [83]
    R. Roiban and A.A. Tseytlin, UV finiteness of Pohlmeyer-reduced form of the AdS 5 × S 5 superstring theory, JHEP 04 (2009) 078 [arXiv:0902.2489] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  84. [84]
    L.F. Alday and J. Maldacena, Null polygonal Wilson loops and minimal surfaces in Anti-de-Sitter space, JHEP 11 (2009) 082 [arXiv:0904.0663] [SPIRES].CrossRefADSGoogle Scholar
  85. [85]
    N. Dorey and T.J. Hollowood, Quantum scattering of charged solitons in the complex sine-Gordon model, Nucl. Phys. B 440 (1995) 215 [hep-th/9410140] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  86. [86]
    D.M. Hofman and J.M. Maldacena, Giant magnons, J. Phys. A 39 (2006) 13095 [hep-th/0604135] [SPIRES].MathSciNetGoogle Scholar
  87. [87]
    I. Bakas and C. Sourdis, Notes on periodic solitons, Fortsch. Phys. 50 (2002) 815 [hep-th/0205007] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Center for the Fundamental Laws of Nature, Jefferson Physical Laboratory, Harvard University Physics DepartmentCambridgeU.S.A.
  2. 2.Theoretical Physics Group, Blackett LaboratoryImperial CollegeLondonU.K.

Personalised recommendations