Probe branes, time-dependent couplings and thermalization in AdS/CFT

  • Sumit R. Das
  • Tatsuma Nishioka
  • Tadashi Takayanagi


We present holographic descriptions of thermalization in conformal field theories using probe D-branes in AdS × S space-times. We find that the induced metrics on Dp-brane worldvolumes which are rotating in an internal sphere direction have horizons with characteristic Hawking temperatures even if there is no black hole in the bulk AdS. The AdS/CFT correspondence applied to such systems indeed reveals thermal properties such as Brownian motions and AC conductivities in the dual conformal field theories. We also use this framework to holographically analyze time-dependent systems undergoing a quantum quench, where parameters in quantum field theories, such as a mass or a coupling constant, are suddenly changed. We confirm that this leads to thermal behavior by demonstrating the formation of apparent horizons in the induced metric after a certain time.


AdS-CFT Correspondence Thermal Field Theory 


  1. [1]
    J .M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES]. MATHMathSciNetADSGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MATHMathSciNetGoogle Scholar
  4. [4]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    S.R. Das, J. Michelson, K. Narayan and S.P. Trivedi, Time dependent cosmologies and their duals, Phys. Rev. D 74 (2006) 026002 [hep-th/0602107] [SPIRES].MathSciNetADSGoogle Scholar
  6. [6]
    S.R. Das, J. Michelson, K. Narayan and S.P. Trivedi, Cosmologies with null singularities and their gauge theory duals, Phys. Rev. D 75 (2007) 026002 [hep-th/0610053] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    A. Awad, S.R. Das, K. Narayan and S.P. Trivedi, Gauge theory duals of cosmological backgrounds and their energy momentum tensors, Phys. Rev. D 77 (2008) 046008 [arXiv:0711.2994] [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    A. Awad, S.R. Das, S. Nampuri, K. Narayan and S.P. Trivedi, Gauge theories with time dependent couplings and their cosmological duals, Phys. Rev. D 79 (2009) 046004 [arXiv:0807.1517] [SPIRES].ADSGoogle Scholar
  9. [9]
    A. Awad, S.R. Das, A. Ghosh, J.-H. Oh and S.P. Trivedi, Slowly varying dilaton cosmologies and their field theory duals, Phys. Rev. D 80 (2009) 126011 [arXiv:0906.3275] [SPIRES].ADSGoogle Scholar
  10. [10]
    T. Hertog and G.T. Horowitz, Towards a big crunch dual, JHEP 07 (2004) 073 [hep-th/0406134] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    T. Hertog and G.T. Horowitz, Holographic description of AdS cosmologies, JHEP 04 (2005) 005 [hep-th/0503071] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    N. Turok, B. Craps and T. Hertog, From big crunch to Big Bang with AdS/CFT, arXiv:0711.1824 [SPIRES].
  13. [13]
    B. Craps, T. Hertog and N. Turok, Quantum resolution of cosmological singularities using AdS/CFT, arXiv:0712.4180 [SPIRES].
  14. [14]
    J. McGreevy and E. Silverstein, The tachyon at the end of the universe, JHEP 08 (2005) 090 [hep-th/0506130] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    E. Silverstein, Dimensional mutation and spacelike singularities, Phys. Rev. D 73 (2006) 086004 [hep-th/0510044] [SPIRES].MathSciNetADSGoogle Scholar
  16. [16]
    G.T. Horowitz and E. Silverstein, The inside story: Quasilocal tachyons and black holes, Phys. Rev. D 73 (2006) 064016 [hep-th/0601032] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    G. Horowitz, A. Lawrence and E. Silverstein, Insightful D-branes, JHEP 07 (2009) 057 [arXiv:0904.3922] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    D.T. Son and A.O. Starinets, V iscosity, black holes and quantum field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    A. Sinha and R.C. Myers, The viscosity bound in string theory, Nucl. Phys. A 830 (2009) 295c–298c [arXiv:0907.4798] [SPIRES].
  21. [21]
    C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].Google Scholar
  22. [22]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    M. Van Raamsdonk, Black hole dynamics from atmospheric science, JHEP 05 (2008) 106 [arXiv:0802.3224] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    R.A. Janik and R.B. Peschanski, Gauge/gravity duality and thermalization of a boost-invariant perfect fluid, Phys. Rev. D 74 (2006) 046007 [hep-th/0606149] [SPIRES].MathSciNetADSGoogle Scholar
  26. [26]
    R.A. Janik, Viscous plasma evolution from gravity using AdS/CFT, Phys. Rev. Lett. 98 (2007) 022302 [hep-th/0610144] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-fromequilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, arXiv:0906.4426 [SPIRES].
  29. [29]
    S. Bhattacharyya and S. Minwalla, Weak field black hole formation in asymptotically AdS spacetimes, JHEP 09 (2009) 034 [arXiv:0904.0464] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    K. Murata, S. Kinoshita and N. Tanahashi, Non-equilibrium condensation process in a holographic superconductor, arXiv:1005.0633 [SPIRES].
  31. [31]
    S. Mondal, D. Sen and K. Sengupta, Non-equilibrium dynamics of quantum systems: order parameter evolution, defect generation, and qubit transfer, arXiv:0908.2922.
  32. [32]
    P. Calabrese and J .L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. (2005) P04010 [cond-mat/0503393] [SPIRES].
  33. [33]
    P. Calabrese and J.L. Cardy, Time-dependence of correlation functions following a quantum quench, Phys. Rev. Lett. 96 (2006) 136801 [cond-mat/0601225] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    M. Rigol, V. Dunjko, V. Yurovsky and M. Olshanii, Relaxation in a completely integrable many-body quantum system: an Ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons, Phys. Rev. Lett. 98 (2007) 050405 [cond-mat/0604476].CrossRefADSGoogle Scholar
  35. [35]
    P. Calabrese and J . Cardy, Quantum quenches in extended systems, J. Stat. Mech. (2007) 06008 [arXiv:0704.1880] [SPIRES].
  36. [36]
    S. Sotiriadis and J. Cardy, Inhomogeneous quantum quenches, J. Stat. Mech. (2008) P11003 [arXiv:0808.0116].
  37. [37]
    S. Sotiriadis, P. Calabrese and J. Cardy, Quantum quench from a thermal initial state, EPL 87 (2009) 20002 [arXiv:0903.0895]. CrossRefADSGoogle Scholar
  38. [38]
    S. Sotiriadis and J. Cardy, Quantum quench in interacting field theory: a self-consistent approximation, Phys. Rev. B 81 (2010) 134305 [arXiv:1002.0167] [SPIRES].ADSGoogle Scholar
  39. [39]
    A. Polkovnikov, Universal adiabatic dynamics in the vicinity of a quantum critical point, Phys. Rev. B 72 (2005) 161201 [cond-mat/0312144]. ADSGoogle Scholar
  40. [40]
    V. Gritsev and A. Polkovnikov, Universal dynamics near quantum critical points, arXiv:0910.3692 [SPIRES].
  41. [41]
    K. Sengupta, D. Sen and S. Mondal, Exact results for quench dynamics and defect production in a two-dimensional model, Phys. Rev. Lett. 100 (2008) 077204 [arXiv:0710.1712]. CrossRefADSGoogle Scholar
  42. [42]
    D. Patane, L. Amico, A. Silva, R. Fazio and G. Santoro, Adiabatic dynamics of a quantum critical system coupled to an environment: scaling and kinetic equation approaches, Phys. Rev. B 80 (2009) 024302 [arXiv:0812.3685]. ADSGoogle Scholar
  43. [43]
    S. Bhattacharyya et al., Forced fluid dynamics from gravity, JHEP 02 (2009) 018 [arXiv:0806.0006] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    A. Karch and L. Randall, Localized gravity in string theory, Phys. Rev. Lett. 87 (2001) 061601 [hep-th/0105108] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  45. [45]
    A. Karch and L. Randall, Open and closed string interpretation of SUSY CFT’s on branes with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  46. [46]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  47. [47]
    M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Meson spectroscopy in AdS/CFT with flavour, JHEP 07 (2003) 049 [hep-th/0304032] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  48. [48]
    D. Mateos, R.C. Myers and R.M. Thomson, Holographic phase transitions with fundamental matter, Phys. Rev. Lett. 97 (2006) 091601 [hep-th/0605046] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  49. [49]
    D. Mateos, R.C. Myers and R.M. Thomson, Holographic viscosity of fundamental matter, Phys. Rev. Lett. 98 (2007) 101601 [hep-th/0610184] [SPIRES].CrossRefADSGoogle Scholar
  50. [50]
    S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite baryon density, JHEP 02 (2007) 016 [hep-th/0611099] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  51. [51]
    D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite chemical potential, JHEP 11 (2007) 085 [arXiv:0709.1225] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  52. [52]
    J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik and I. Kirsch, Chiral symmetry breaking and pions in non-supersymmetric gauge/gravity duals, Phys. Rev. D 69 (2004) 066007 [hep-th/0306018] [SPIRES].MathSciNetADSGoogle Scholar
  53. [53]
    R. Apreda, J. Erdmenger, N. Evans and Z. Guralnik, Strong coupling effective Higgs potential and a first order thermal phase transition from AdS/CFT duality, Phys. Rev. D 71 (2005) 126002 [hep-th/0504151] [SPIRES].ADSGoogle Scholar
  54. [54]
    A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  55. [55]
    M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Superconductivity from gauge/gravity duality with flavor, Phys. Lett. B 680 (2009) 516 [arXiv:0810.2316] [SPIRES].ADSGoogle Scholar
  56. [56]
    M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Flavor superconductivity from gauge/gravity duality, JHEP 10 (2009) 067 [arXiv:0903.1864] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  57. [57]
    N. Evans, A. Gebauer, K.-Y. Kim and M. Magou, Holographic description of the phase diagram of a chiral symmetry breaking gauge theory, JHEP 03 (2010) 132 [arXiv:1002.1885] [SPIRES].CrossRefGoogle Scholar
  58. [58]
    K. Jensen, A. Karch and E.G. Thompson, A holographic quantum critical point at finite magnetic field and finite density, JHEP 05 (2010) 015 [arXiv:1002.2447] [SPIRES].CrossRefGoogle Scholar
  59. [59]
    K. Jensen, A. Karch, D.T. Son and E.G. Thompson, Holographic Berezinskii-Kosterlitz-Thouless transitions, arXiv:1002.3159 [SPIRES].
  60. [60]
    N. Evans, A. Gebauer, K.-Y. Kim and M. Magou, Phase diagram of the D3/D5 system in a magnetic field and a BKT transition, arXiv:1003.2694 [SPIRES].
  61. [61]
    S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [SPIRES].CrossRefGoogle Scholar
  62. [62]
    T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, From black holes to strange metals, arXiv:1003.1728 [SPIRES].
  63. [63]
    J . McGreevy, Holographic duality with a view toward many-body physics, arXiv:0909.0518 [SPIRES].
  64. [64]
    H. Liu, J . McGreevy and D. Vegh, Non-Fermi liquids from holography, arXiv:0903.2477 [SPIRES].
  65. [65]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality,Fermi surfaces and AdS2, arXiv:0907.2694 [SPIRES].
  66. [66]
    J.G. Russo and P.K. Townsend, Accelerating branes and brane temperature, Class. Quant. Grav. 25 (2008) 175017 [arXiv:0805.3488] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  67. [67]
    M. Chernicoff and A. Guijosa, Acceleration, energy loss and screening in strongly-coupled gauge theories, JHEP 06 (2008) 005 [arXiv:0803.3070] [SPIRES].CrossRefADSGoogle Scholar
  68. [68]
    A. Paredes, K. Peeters and M. Zamaklar, Temperature versus acceleration: the Unruh effect for holographic models, JHEP 04 (2009) 015 [arXiv:0812.0981] [SPIRES].CrossRefADSGoogle Scholar
  69. [69]
    C. Athanasiou, P.M. Chesler, H. Liu, D. Nickel and K. Rajagopal, Synchrotron radiation in strongly coupled conformal field theories, Phys. Rev. D 81 (2010) 126001 [arXiv:1001.3880] [SPIRES]. ADSGoogle Scholar
  70. [70]
    E. Caceres, M. Chernicoff, A. Guijosa and J.F. Pedraza, Quantum fluctuations and the Unruh effect in strongly-coupled conformal field theories, JHEP 06 (2010) 078 [arXiv:1003.5332] [SPIRES].CrossRefGoogle Scholar
  71. [71]
    T. Hirata, S. Mukohyama and T. Takayanagi, Decaying D-branes and moving mirrors, JHEP 05 (2008) 089 [arXiv:0804.1176] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  72. [72]
    T. Hirayama, P.-W. Kao, S. Kawamoto and F.-L. Lin, Unruh effect and holography, arXiv:1001.1289 [SPIRES].
  73. [73]
    W.G. Unruh, Experimental black hole evaporation, Phys. Rev. Lett. 46 (1981) 1351 [SPIRES]. CrossRefADSGoogle Scholar
  74. [74]
    C. Barcelo, S. Liberati and M. Visser, Analog gravity from field theory normal modes?, Class. Quant. Grav. 18 (2001) 3595 [gr-qc/0104001] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  75. [75]
    D.-E. Diaconescu, D-branes, monopoles and Nahm equations, Nucl. Phys. B 503 (1997) 220 [hep-th/9608163] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  76. [76]
    O. DeWolfe, D.Z. Freedman and H. Ooguri, Holography and defect conformal field theories, Phys. Rev. D 66 (2002) 025009 [hep-th/0111135] [SPIRES].MathSciNetADSGoogle Scholar
  77. [77]
    N.R. Constable, J. Erdmenger, Z. Guralnik and I. Kirsch, Intersecting D3-branes and holography, Phys. Rev. D 68 (2003) 106007 [hep-th/0211222] [SPIRES].MathSciNetADSGoogle Scholar
  78. [78]
    N.R. Constable, J. Erdmenger, Z. Guralnik and I. Kirsch, (De)constructing intersecting M5-branes, Phys. Rev. D 67 (2003) 106005 [hep-th/0212136] [SPIRES].MathSciNetADSGoogle Scholar
  79. [79]
    J. de Boer, V.E. Hubeny, M. Rangamani and M. Shigemori, Brownian motion in AdS/CFT, JHEP 07 (2009) 094 [arXiv:0812.5112] [SPIRES].CrossRefGoogle Scholar
  80. [80]
    A.N. Atmaja, J. de Boer and M. Shigemori, Holographic brownian motion and time scales in strongly coupled plasmas, arXiv:1002.2429 [SPIRES].
  81. [81]
    D.T. Son and D. Teaney, Thermal noise and stochastic strings in AdS/CFT, JHEP 07 (2009) 021 [arXiv:0901.2338] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  82. [82]
    A. O’Bannon, Toward a holographic model of superconducting fermions, JHEP 01 (2009) 074 [arXiv:0811.0198] [SPIRES].CrossRefGoogle Scholar
  83. [83]
    N. Evans and E. Threlfall, R-Charge chemical potential in the M2-M5 system, arXiv:0807.3679 [SPIRES].
  84. [84]
    N. Evans and E. Threlfall, Chemical potential in the gravity dual of a 2+1 dimensional system, Phys. Rev. D 79 (2009) 066008 [arXiv:0812.3273] [SPIRES].MathSciNetADSGoogle Scholar
  85. [85]
    A. Karch, A. O’Bannon and E. Thompson, The stress-energy tensor of flavor fields from AdS/CFT, JHEP 04 (2009) 021 [arXiv:0812.3629] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  86. [86]
    S.S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74 (2006) 126005 [hep-th/0605182] [SPIRES].MathSciNetADSGoogle Scholar
  87. [87]
    C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L.G. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  88. [88]
    H. Liu, K. Rajagopal and U.A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT, Phys. Rev. Lett. 97 (2006) 182301 [hep-ph/0605178] [SPIRES].CrossRefADSGoogle Scholar
  89. [89]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES].MATHMathSciNetGoogle Scholar
  90. [90]
    R. Landauer, Spatial variation of currents and fields due to localized scatterers in metallic conduction, IBM J. of Research and Development 1 (1957) 223.CrossRefMathSciNetGoogle Scholar
  91. [91]
    M. Buttiker, Y. Imry, R. Landauer, and S. Pinhas, Generalized many-channel conductance formula with application to small rings, Phys. Rev. B 31 (1985) 6207.ADSGoogle Scholar
  92. [92]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  93. [93]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  94. [94]
    T. Damour and R. Ruffini, Black hole evaporation in the Klein-Sauter-Heisenberg-Euler formalism, Phys. Rev. D 14 (1976) 332 [SPIRES].ADSGoogle Scholar
  95. [95]
    M.K. Parikh and F. Wilczek, Hawking radiation as tunneling, Phys. Rev. Lett. 85 (2000) 5042 [hep-th/9907001] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  96. [96]
    M. Visser, Essential and inessential features of Hawking radiation, Int. J. Mod. Phys. D 12 (2003) 649 [hep-th/0106111] [SPIRES].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Sumit R. Das
    • 1
    • 2
  • Tatsuma Nishioka
    • 3
  • Tadashi Takayanagi
    • 1
  1. 1.Institute for the Physics and Mathematics of the Universe (IPMU)University of TokyoKashiwa, ChibaJapan
  2. 2.Department of Physics and AstronomyUniversity of KentuckyLexingtonU.S.A.
  3. 3.Department of Physics, Faculty of ScienceUniversity of TokyoTokyoJapan

Personalised recommendations