Non-equilibrium condensation process in a holographic superconductor

  • Keiju Murata
  • Shunichiro Kinoshita
  • Norihiro Tanahashi


We study the non-equilibrium condensation process in a holographic superconductor. When the temperature T is smaller than a critical temperature T c , there are two black hole solutions, the Reissner-Nordström-AdS black hole and a black hole with a scalar hair. In the boundary theory, they can be regarded as the supercooled normal phase and the superconducting phase, respectively. We consider perturbations on supercooled Reissner-Nordström-AdS black holes and study their non-linear time evolution to know about physical phenomena associated with rapidly-cooled superconductors. We find that, for T < T c , the initial perturbations grow exponentially and, eventually, spacetimes approach the hairy black holes. We also clarify how the relaxation process from a far-from-equilibrium state proceeds in the boundary theory by observing the time dependence of the superconducting order parameter. Finally, we study the time evolution of event and apparent horizons and discuss their correspondence with the entropy of the boundary theory. Our result gives a first step toward the holographic understanding of the non-equilibrium process in superconductors.


Gauge-gravity correspondence AdS-CFT Correspondence Classical Theories of Gravity Black Holes 


  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES]. MATHMathSciNetADSGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MATHMathSciNetGoogle Scholar
  4. [4]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].ADSGoogle Scholar
  5. [5]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    M. Mondello and N. Goldenfeld, Scaling and vortex dynamics after the quench of a system with a continuous symmetry, Phys. Rev. A 42 (1990) 5865 [SPIRES]. ADSGoogle Scholar
  8. [8]
    F. Liu, M. Mondello and N. Goldenfeld, Kinetics of the superconducting transition, Phys. Rev. Lett. 66 (1991) 3071 [SPIRES]. CrossRefADSGoogle Scholar
  9. [9]
    M. Mondello and N. Goldenfeld, Scaling and vortex-string dynamics in a three-dimensional system with a continuous symmetry, Phys. Rev. A 45 (1992) 657 [SPIRES].ADSGoogle Scholar
  10. [10]
    M. Mondello and N. Goldenfeld, Scaling and vortex-string dynamics in a three-dimensional system with a continuous symmetry, Phys. Rev. A 45 (1992) 657 [SPIRES].ADSGoogle Scholar
  11. [11]
    G.J. Stephens, L.M.A. Bettencourt and W.H. Zurek, Critical dynamics of gauge systems: Spontaneous vortex formation in 2D superconductors, Phys. Rev. Lett. 88 (2002) 137004 [cond-mat/0108127] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    R.A. Janik and R.B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of AdS/CFT, Phys. Rev. D 73 (2006) 045013 [hep-th/0512162] [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [SPIRES]. CrossRefADSGoogle Scholar
  14. [14]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    D. Grumiller and P. Romatschke, On the collision of two shock waves in AdS5, JHEP 08 (2008) 027 [arXiv:0803.3226] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    S.S. Gubser, S.S. Pufu and A. Yarom, Entropy production in collisions of gravitational shock waves and of heavy ions, Phys. Rev. D 78 (2008) 066014 [arXiv:0805.1551] [SPIRES].ADSGoogle Scholar
  17. [17]
    L. Alvarez-Gaumè, C. Gomez, A. Sabio Vera, A. Tavanfar and M.A. Vazquez-Mozo, Critical formation of trapped surfaces in the collision of gravitational shock waves, JHEP 02 (2009) 009 [arXiv:0811.3969] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    S. Lin and E. Shuryak, Grazing Collisions of Gravitational Shock Waves and Entropy Production in Heavy Ion Collision, Phys. Rev. D 79 (2009) 124015 [arXiv:0902.1508] [SPIRES]. ADSGoogle Scholar
  19. [19]
    S.S. Gubser, S.S. Pufu and A. Yarom, Off-center collisions in AdS 5 with applications to multiplicity estimates in heavy-ion collisions, JHEP 11 (2009) 050 [arXiv:0902.4062] [SPIRES]. CrossRefADSGoogle Scholar
  20. [20]
    S. Bhattacharyya and S. Minwalla, Weak Field Black Hole Formation in Asymptotically AdS Spacetimes, JHEP 09 (2009) 034 [arXiv:0904.0464] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    I. Amado, M. Kaminski and K. Landsteiner, Hydrodynamics of Holographic Superconductors, JHEP 05 (2009) 021 [arXiv:0903.2209] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    R.A. Konoplya and A. Zhidenko, Holographic conductivity of zero temperature superconductors, Phys. Lett. B 686 (2010) 199 [arXiv:0909.2138] [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    G.T. Horowitz, Introduction to Holographic Superconductors, arXiv:1002.1722 [SPIRES].
  26. [26]
    K. Maeda, M. Natsuume and T. Okamura, Universality class of holographic superconductors, Phys. Rev. D 79 (2009) 126004 [arXiv:0904.1914] [SPIRES].ADSGoogle Scholar
  27. [27]
    P. Basu, A. Mukherjee and H.H. Shieh, Supercurrent: Vector Hair for an AdS Black Hole, Phys. Rev. D 79 (2009) 045010 [arXiv:0809.4494] [SPIRES].ADSGoogle Scholar
  28. [28]
    C.P. Herzog, P.K. Kovtun and D.T. Son, Holographic model of superfluidity, Phys. Rev. D 79 (2009) 066002 [arXiv:0809.4870] [SPIRES].MathSciNetADSGoogle Scholar
  29. [29]
    C.P. Herzog and A. Yarom, Sound modes in holographic superfluids, Phys. Rev. D 80 (2009) 106002 [arXiv:0906.4810] [SPIRES].ADSGoogle Scholar
  30. [30]
    K. Maeda, S. Fujii and J.-i. Koga, The final fate of instability of Reissner-Nordstróm-anti-de Sitter black holes by charged complex scalar fields, Phys. Rev. D 81 (2010) 124020 [arXiv:1003.2689] [SPIRES].ADSGoogle Scholar
  31. [31]
    R.A. Konoplya, Decay of charged scalar field around a black hole: Quasinormal modes of R-N, R-N-AdS and dilaton black hole, Phys. Rev. D 66 (2002) 084007 [gr-qc/0207028] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    A.S. Miranda, J. Morgan and V.T. Zanchin, Quasinormal modes of plane-symmetric black holes according to the AdS/CFT correspondence, JHEP 11 (2008) 030 [arXiv:0809.0297] [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    S. Bhattacharyya et al., Local Fluid Dynamical Entropy from Gravity, JHEP 06 (2008) 055 [arXiv:0803.2526] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    S. Kinoshita, S. Mukohyama, S. Nakamura and K.-y. Oda, A Holographic Dual of Bjorken Flow, Prog. Theor. Phys. 121 (2009) 121 [arXiv:0807.3797] [SPIRES].MATHCrossRefADSGoogle Scholar
  35. [35]
    P. Figueras, V.E. Hubeny, M. Rangamani and S.F. Ross, Dynamical black holes and expanding plasmas, JHEP 04 (2009) 137 [arXiv:0902.4696] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    S.R. Das, T. Nishioka and T. Takayanagi, Probe Branes, Time-dependent Couplings and Thermalization in AdS/CFT, arXiv:1005.3348 [SPIRES].
  37. [37]
    C. Wu, K. Sun, E. Fradkin and S.-C. Zhang, Fermi liquid instabilities in the spin channel, Phys. Rev. B 75 (2007) 115103 [SPIRES]. ADSGoogle Scholar
  38. [38]
    J.-W. Chen, Y.-J. Kao and W.-Y. Wen, Peak-Dip-Hump from Holographic Superconductivity, arXiv:0911.2821 [SPIRES].
  39. [39]
    T. Faulkner, G.T. Horowitz, J. McGreevy, M.M. Roberts and D. Vegh, Photoemission ’experiments’ on holographic superconductors, JHEP 03 (2010) 121 [arXiv:0911.3402] [SPIRES]. CrossRefGoogle Scholar
  40. [40]
    S.S. Gubser, F.D. Rocha and P. Talavera, Normalizable fermion modes in a holographic superconductor, arXiv:0911.3632 [SPIRES].
  41. [41]
    T. Hartman and S.A. Hartnoll, Cooper pairing near charged black holes, JHEP 06 (2010) 005 [arXiv:1003.1918] [SPIRES].CrossRefGoogle Scholar
  42. [42]
    Y.M. Galperin, V.L. Gurevich, V.I. Kozub and A.L. Shelankov, Theory of thermoelectric phenomena in superconductors, Phys. Rev. B 65 (2002) 064531.ADSGoogle Scholar
  43. [43]
    O. Ozen and R. Narayanan, The physics of evaporative and convective instabilities in bilayer systems: Linear theory, Phys. Fluids 16 (2004) 4644.CrossRefADSGoogle Scholar
  44. [44]
    O. Ozen and R. Narayanan, The physics of evaporative instability in bilayer systems: Weak nonlinear theory, Phys. Fluids 16 (2004) 4653.CrossRefADSGoogle Scholar
  45. [45]
    T. Albash and C.V. Johnson, Vortex and Droplet Engineering in Holographic Superconductors, Phys. Rev. D 80 (2009) 126009 [arXiv:0906.1795] [SPIRES].ADSGoogle Scholar
  46. [46]
    M. Montull, A. Pomarol and P.J. Silva, The Holographic Superconductor Vortex, Phys. Rev. Lett. 103 (2009) 091601 [arXiv:0906.2396] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  47. [47]
    H. Yoshino and M. Shibata, Higher-dimensional numerical relativity: Formulation and code tests, Phys. Rev. D 80 (2009) 084025 [arXiv:0907.2760] [SPIRES].ADSGoogle Scholar
  48. [48]
    K.-i. Nakao, H. Abe, H. Yoshino and M. Shibata, Maximal slicing of D-dimensional spherically-symmetric vacuum spacetime, Phys. Rev. D 80 (2009) 084028 [arXiv:0908.0799] [SPIRES].ADSGoogle Scholar
  49. [49]
    M. Shibata and H. Yoshino, Nonaxisymmetric instability of rapidly rotating black hole in five dimensions, Phys. Rev. D 81 (2010) 021501 [arXiv:0912.3606] [SPIRES].ADSGoogle Scholar
  50. [50]
    M. Zilhao et al., Numerical relativity for D dimensional axially symmetric space-times: formalism and code tests, Phys. Rev. D 81 (2010) 084052 [arXiv:1001.2302] [SPIRES].ADSGoogle Scholar
  51. [51]
    H. Witek et al., Black holes in a box: towards the numerical evolution of black holes in AdS, J. Phys. Conf. Ser. 229 (2010) 012072 [arXiv:1004.4633] [SPIRES].CrossRefADSGoogle Scholar
  52. [52]
    K. Maeda, M. Natsuume and T. Okamura, Vortex lattice for a holographic superconductor, Phys. Rev. D 81 (2010) 026002 [arXiv:0910.4475] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Keiju Murata
    • 1
  • Shunichiro Kinoshita
    • 2
  • Norihiro Tanahashi
    • 2
  1. 1.DAMTPUniversity of Cambridge, Centre for Mathematical SciencesCambridgeUnited Kingdom
  2. 2.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan

Personalised recommendations