Advertisement

Randall-Sundrum and strings

  • Matthew Reece
  • Lian-Tao Wang
Article

Abstract

We investigate stringy excitations in Randall-Sundrum effective theories for electroweak symmetry breaking arising from embedding in string theory. RS is dual to a confining gauge theory, which we expect to have “QCD strings”, or color flux tubes. Stringy constructions of RS-like theories allow us to investigate the mass of these string states, which typically grows with a small fractional power of the number of colors N of the dual gauge theory. There are two known strong constraints on N for RS-like theories. The first arises from demanding that the Standard Model gauge couplings do not have a Landau pole at low scales. The second arises from demanding that the first-order confining phase transition in the early universe is able to proceed without leaving an empty universe, i.e. that the rate of bubble nucleation is not too small. We find that these constraints on N imply that string states are generically at most a factor of a few heavier than the lightest KK states, and we cannot self-consistently remain in the limit N,λ ≫ 1. We examine various string constructions of AdS or RS-like backgrounds, including orbifolds, theories on M5-branes, theories on D4-branes, and the recent F-theory construction of Polchinski and Silverstein. In every case we find that there are strong bounds on the mass of new stringy states. We briefly discuss important phenomenological implications due to the presence of such light stringy excitations, such as precision electroweak and flavor observables, as well as collider signals.

Keywords

Strings and branes phenomenology Phenomenology of Field Theories in Higher Dimensions 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].MathSciNetADSMATHGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MathSciNetMATHGoogle Scholar
  4. [4]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].MathSciNetADSCrossRefMATHGoogle Scholar
  5. [5]
    N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    C. Csáki, J. Hubisz and P. Meade, Electroweak symmetry breaking from extra dimensions, hep-ph/0510275 [SPIRES].
  7. [7]
    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: Duality cascades and χ SB -resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Bulk gauge fields in the Randall-Sundrum model, Phys. Lett. B 473 (2000) 43 [hep-ph/9911262] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    A. Pomarol, Gauge bosons in a five-dimensional theory with localized gravity, Phys. Lett. B 486 (2000) 153 [hep-ph/9911294] [SPIRES].ADSGoogle Scholar
  10. [10]
    S. Chang, J. Hisano, H. Nakano, N. Okada and M. Yamaguchi, Bulk standard model in the Randall-Sundrum background, Phys. Rev. D 62 (2000) 084025 [hep-ph/9912498] [SPIRES].MathSciNetADSGoogle Scholar
  11. [11]
    K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    A. Pomarol, Grand Unified Theories without the Desert, Phys. Rev. Lett. 85 (2000) 4004 [hep-ph/0005293] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    R. Contino, P. Creminelli and E. Trincherini, Holographic evolution of gauge couplings, JHEP 10 (2002) 029 [hep-th/0208002] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    K. Agashe, R. Contino and R. Sundrum, Top compositeness and precision unification, Phys. Rev. Lett. 95 (2005) 171804 [hep-ph/0502222] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    P. Creminelli, A. Nicolis and R. Rattazzi, Holography and the electroweak phase transition, JHEP 03 (2002) 051 [hep-th/0107141] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    J. Kaplan, P.C. Schuster and N. Toro, Avoiding an empty universe in RS I models and large-N gauge theories, hep-ph/0609012 [SPIRES].
  17. [17]
    M.J. Strassler, Non-supersymmetric theories with light scalar fields and large hierarchies, hep-th/0309122 [SPIRES].
  18. [18]
    S. Kachru, D. Simic and S.P. Trivedi, Stable non-supersymmetric throats in string theory, JHEP 05 (2010) 067 [arXiv:0905.2970] [SPIRES].CrossRefGoogle Scholar
  19. [19]
    M.J. Strassler, Why unparticle models with mass gaps are examples of hidden valleys, arXiv:0801.0629 [SPIRES].
  20. [20]
    B. Hassanain, J. March-Russell and J.G. Rosa, On the possibility of light string resonances at the LHC and Tevatron from Randall-Sundrum throats, JHEP 07 (2009) 077 [arXiv:0904.4108] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    M. Perelstein and A. Spray, Tensor Reggeons from warped space at the LHC, JHEP 10 (2009) 096 [arXiv:0907.3496] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    N. Arkani-Hamed, A.G. Cohen and H. Georgi, (De)constructing dimensions, Phys. Rev. Lett. 86 (2001) 4757 [hep-th/0104005] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    H.-C. Cheng, C.T. Hill and J. Wang, Dynamical electroweak breaking and latticized extra dimensions, Phys. Rev. D64 (2001) 095003 [hep-ph/0105323] [SPIRES].ADSGoogle Scholar
  24. [24]
    H. Abe, T. Kobayashi, N. Maru and K. Yoshioka, Field localization in warped gauge theories, Phys. Rev. D67 (2003) 045019 [hep-ph/0205344] [SPIRES].MathSciNetADSGoogle Scholar
  25. [25]
    A. Falkowski and H.D. Kim, Running of gauge couplings in AdS 5 via deconstruction, JHEP 08 (2002) 052 [hep-ph/0208058] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    L. Randall, Y. Shadmi and N. Weiner, Deconstruction and gauge theories in AdS 5, JHEP 01 (2003) 055 [hep-th/0208120] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    M.J. Strassler, Duality in supersymmetric field theory: General conceptual background and an application to real particle physics, prepared for International Workshop on Perspectives of Strong Coupling Gauge Theories (SCGT96), November 13–16, Nagoya, Japan (1996), available at http://www.eken.phys.nagoya-u.ac.jp/Scgt/proc/.
  29. [29]
    J.F.G. Cascales, F. Saad and A.M. Uranga, Holographic dual of the standard model on the throat, JHEP 11 (2005) 047 [hep-th/0503079] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    J.J. Heckman, C. Vafa, H. Verlinde and M. Wijnholt, Cascading to the MSSM, JHEP 06 (2008) 016 [arXiv:0711.0387] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    H. Davoudiasl, G. Perez and A. Soni, The little Randall-Sundrum model at the Large Hadron Collider, Phys. Lett. B 665 (2008) 67 [arXiv:0802.0203] [SPIRES].ADSGoogle Scholar
  32. [32]
    H. Davoudiasl, S. Gopalakrishna and A. Soni, Big signals of little Randall-Sundrum models, Phys. Lett. B 686 (2010) 239 [arXiv:0908.1131] [SPIRES].ADSGoogle Scholar
  33. [33]
    D. Gaiotto and J. Maldacena, The gravity duals of N =2 superconformal field theories, arXiv:0904.4466 [SPIRES].
  34. [34]
    S. Hannestad, What is the lowest possible reheating temperature?, Phys. Rev. D 70 (2004) 043506 [astro-ph/0403291] [SPIRES].ADSGoogle Scholar
  35. [35]
    S.W. Hawking and D.N. Page, Thermodynamics of black holes in Anti-de Sitter space, Commun. Math. Phys. 87 (1983) 577 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES].MathSciNetMATHGoogle Scholar
  37. [37]
    C.P. Herzog, A holographic prediction of the deconfinement temperature, Phys. Rev. Lett. 98 (2007) 091601 [hep-th/0608151] [SPIRES].ADSCrossRefGoogle Scholar
  38. [38]
    C.A. Ballon Bayona, H. Boschi-Filho, N.R.F. Braga and L.A. Pando Zayas, On a holographic model for confinement/deconfinement, Phys. Rev. D77 (2008) 046002 [arXiv:0705.1529] [SPIRES].ADSGoogle Scholar
  39. [39]
    L. Randall and G. Servant, Gravitational waves from warped spacetime, JHEP 05 (2007) 054 [hep-ph/0607158] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    G. Nardini, M. Quiros and A. Wulzer, A confining strong first-order electroweak phase transition, JHEP 09 (2007) 077 [arXiv:0706.3388] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    B. Hassanain, J. March-Russell and M. Schvellinger, Warped deformed throats have faster (electroweak) phase transitions, JHEP 10 (2007) 089 [arXiv:0708.2060] [SPIRES].ADSCrossRefGoogle Scholar
  42. [42]
    M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    T. Gherghetta and J. Giedt, Bulk fields in AdS 5 from probe D7 branes, Phys. Rev. D 74 (2006) 066007 [hep-th/0605212] [SPIRES].MathSciNetADSGoogle Scholar
  45. [45]
    S.S. Gubser, Einstein manifolds and conformal field theories, Phys. Rev. D 59 (1999) 025006 [hep-th/9807164] [SPIRES].MathSciNetADSGoogle Scholar
  46. [46]
    J. Polchinski and M.J. Strassler, The string dual of a confining four-dimensional gauge theory, hep-th/0003136 [SPIRES].
  47. [47]
    M.J. Strassler, The duality cascade, hep-th/0505153 [SPIRES].
  48. [48]
    F. Benini, F. Canoura, S. Cremonesi, C. Núñez and A.V. Ramallo, Backreacting flavors in the Klebanov-Strassler background, JHEP 09 (2007) 109 [arXiv:0706.1238] [SPIRES].ADSCrossRefGoogle Scholar
  49. [49]
    F. Bigazzi, A.L. Cotrone, A. Paredes and A.V. Ramallo, The Klebanov-Strassler model with massive dynamical flavors, JHEP 03 (2009) 153 [arXiv:0812.3399] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    S. Kachru and E. Silverstein, 4D conformal theories and strings on orbifolds, Phys. Rev. Lett. 80 (1998) 4855 [hep-th/9802183] [SPIRES].MathSciNetADSCrossRefMATHGoogle Scholar
  51. [51]
    A.E. Lawrence, N. Nekrasov and C. Vafa, On conformal field theories in four dimensions, Nucl. Phys. B 533 (1998) 199 [hep-th/9803015] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    M. Bershadsky, Z. Kakushadze and C. Vafa, String expansion as large-N expansion of gauge theories, Nucl. Phys. B 523 (1998) 59 [hep-th/9803076] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    Y. Oz and J. Terning, Orbifolds of AdS 5 × S 5 and 4D conformal field theories, Nucl. Phys. B 532 (1998) 163 [hep-th/9803167] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    M. Bershadsky and A. Johansen, Large-N limit of orbifold field theories, Nucl. Phys. B 536 (1998) 141 [hep-th/9803249] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    G.T. Horowitz, J. Orgera and J. Polchinski, Nonperturbative Instability of AdS 5 × S 5 /Zk, Phys. Rev. D 77 (2008) 024004 [arXiv:0709.4262] [SPIRES].MathSciNetADSGoogle Scholar
  56. [56]
    E. Witten, Instability of the Kaluza-Klein vacuum, Nucl. Phys. B 195 (1982) 481 [SPIRES].ADSCrossRefGoogle Scholar
  57. [57]
    J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Sasaki-Einstein metrics on S 2 × S 3, Adv. Theor. Math. Phys. 8 (2004) 711 [hep-th/0403002] [SPIRES].MathSciNetMATHGoogle Scholar
  58. [58]
    D. Martelli and J. Sparks, Toric geometry, Sasaki-Einstein manifolds and a new infinite class of AdS/CFT duals, Commun. Math. Phys. 262 (2006) 51 [hep-th/0411238] [SPIRES].MathSciNetADSCrossRefMATHGoogle Scholar
  59. [59]
    C.P. Herzog, Q.J. Ejaz and I.R. Klebanov, Cascading RG flows from new Sasaki-Einstein manifolds, JHEP 02 (2005) 009 [hep-th/0412193] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    J. Polchinski and E. Silverstein, Dual purpose landscaping tools: small extra dimensions in AdS/CFT, arXiv:0908.0756 [SPIRES].
  61. [61]
    T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [SPIRES].ADSCrossRefMATHGoogle Scholar
  62. [62]
    T. Sakai and S. Sugimoto, More on a holographic dual of QCD, Prog. Theor. Phys. 114 (2005) 1083 [hep-th/0507073] [SPIRES].ADSCrossRefMATHGoogle Scholar
  63. [63]
    C.D. Carone, J. Erlich and M. Sher, Holographic electroweak symmetry breaking from D-branes, Phys. Rev. D 76 (2007) 015015 [arXiv:0704.3084] [SPIRES].ADSGoogle Scholar
  64. [64]
    T. Hirayama and K. Yoshioka, Holographic construction of Technicolor theory, JHEP 10 (2007) 002 [arXiv:0705.3533] [SPIRES].ADSCrossRefGoogle Scholar
  65. [65]
    C.D. Carone, J. Erlich and M. Sher, Extra gauge invariance from an extra dimension, Phys. Rev. D 78 (2008) 015001 [arXiv:0802.3702] [SPIRES].ADSGoogle Scholar
  66. [66]
    O. Mintakevich and J. Sonnenschein, Holographic technicolor models and their S-parameter, JHEP 07 (2009) 032 [arXiv:0905.3284] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    E. Antonyan, J.A. Harvey, S. Jensen and D. Kutasov, NJLS and QCD from string theory, hep-th/0604017 [SPIRES].
  68. [68]
    M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [SPIRES].ADSGoogle Scholar
  69. [69]
    L.B. Okun, THETONS, JETP Lett. 31 (1980) 144 [Pisma Zh. Eksp. Teor. Fiz. 31 (1979) 156] [SPIRES].ADSGoogle Scholar
  70. [70]
    L.B. Okun, Theta particles, Nucl. Phys. B 173 (1980) 1 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    J. Kang and M.A. Luty, Macroscopic strings and ’quirks’ at colliders, JHEP 11 (2009) 065 [arXiv:0805.4642] [SPIRES].ADSCrossRefGoogle Scholar
  72. [72]
    J.E. Juknevich, D. Melnikov and M.J. Strassler, A pure-glue hidden valley I. States and decays, JHEP 07 (2009) 055 [arXiv:0903.0883] [SPIRES].ADSCrossRefGoogle Scholar
  73. [73]
    O. Aharony, J. Sonnenschein and S. Yankielowicz, A holographic model of deconfinement and chiral symmetry restoration, Annals Phys. 322 (2007) 1420 [hep-th/0604161] [SPIRES].MathSciNetADSCrossRefMATHGoogle Scholar
  74. [74]
    A. Parnachev and D.A. Sahakyan, Chiral phase transition from string theory, Phys. Rev. Lett. 97 (2006) 111601 [hep-th/0604173] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  75. [75]
    D. Gaiotto, N =2 dualities, arXiv:0904.2715 [SPIRES].
  76. [76]
    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  77. [77]
    I.R. Klebanov and J.M. Maldacena, Superconformal gauge theories and non-critical superstrings, Int. J. Mod. Phys. A 19 (2004) 5003 [hep-th/0409133] [SPIRES].MathSciNetADSGoogle Scholar
  78. [78]
    G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [SPIRES].MathSciNetADSGoogle Scholar
  79. [79]
    K.G. Wilson, Confinement of quarks, Phys. Rev. D 10 (1974) 2445 [SPIRES].ADSGoogle Scholar
  80. [80]
    Y. Nambu, Strings, monopoles and gauge fields, Phys. Rev. D 10 (1974) 4262 [SPIRES].ADSGoogle Scholar
  81. [81]
    G. ’t Hooft, On the phase transition towards permanent quark confinement, Nucl. Phys. B 138 (1978) 1 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  82. [82]
    Y. Nambu, QCD and the string model, Phys. Lett. B 80 (1979) 372 [SPIRES].ADSGoogle Scholar
  83. [83]
    M. Lüscher, G. Munster and P. Weisz, How thick are chromoelectric flux tubes?, Nucl. Phys. B 180 (1981) 1 [SPIRES].ADSCrossRefGoogle Scholar
  84. [84]
    M. Lüscher, Symmetry breaking aspects of the roughening transition in gauge theories, Nucl. Phys. B 180 (1981) 317 [SPIRES].ADSCrossRefGoogle Scholar
  85. [85]
    R. Sundrum, Hadronic string from confinement, hep-ph/9702306 [SPIRES].
  86. [86]
    J.K. Erickson, G.W. Semenoff, R.J. Szabo and K. Zarembo, Static potential in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 61 (2000) 105006 [hep-th/9911088] [SPIRES].MathSciNetADSGoogle Scholar
  87. [87]
    J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  88. [88]
    C. Bachas, Convexity of the quarkonium potential, Phys. Rev. D 33 (1986) 2723 [SPIRES].ADSGoogle Scholar
  89. [89]
    M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [SPIRES].ADSCrossRefGoogle Scholar
  90. [90]
    B. Holdom and J. Terning, Large corrections to electroweak parameters in technicolor theories, Phys. Lett. B 247 (1990) 88 [SPIRES].ADSGoogle Scholar
  91. [91]
    M. Golden and L. Randall, Radiative corrections to electroweak parameters in technicolor theories, Nucl. Phys. B 361 (1991) 3 [SPIRES].ADSCrossRefGoogle Scholar
  92. [92]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [SPIRES].ADSGoogle Scholar
  93. [93]
    C. Csáki, J. Erlich and J. Terning, The effective Lagrangian in the Randall-Sundrum model and electroweak physics, Phys. Rev. D 66 (2002) 064021 [hep-ph/0203034] [SPIRES].ADSGoogle Scholar
  94. [94]
    C. Grojean, W. Skiba and J. Terning, Disguising the oblique parameters, Phys. Rev. D 73 (2006) 075008 [hep-ph/0602154] [SPIRES].ADSGoogle Scholar
  95. [95]
    G. Cacciapaglia, C. Csáki, G. Marandella and A. Strumia, The minimal set of electroweak precision parameters, Phys. Rev. D 74 (2006) 033011 [hep-ph/0604111] [SPIRES].ADSGoogle Scholar
  96. [96]
    G. Cacciapaglia, C. Csáki, C. Grojean and J. Terning, Oblique corrections from Higgsless models in warped space, Phys. Rev. D 70 (2004) 075014 [hep-ph/0401160] [SPIRES].ADSGoogle Scholar
  97. [97]
    R. Barbieri, A. Pomarol and R. Rattazzi, Weakly coupled Higgsless theories and precision electroweak tests, Phys. Lett. B 591 (2004) 141 [hep-ph/0310285] [SPIRES].ADSGoogle Scholar
  98. [98]
    D.K. Hong and H.-U. Yee, Holographic estimate of oblique corrections for technicolor, Phys. Rev. D 74 (2006) 015011 [hep-ph/0602177] [SPIRES].ADSGoogle Scholar
  99. [99]
    K. Agashe, C. Csáki, C. Grojean and M. Reece, The S-parameter in holographic technicolor models, JHEP 12 (2007) 003 [arXiv:0704.1821] [SPIRES].ADSCrossRefGoogle Scholar
  100. [100]
    G. Cacciapaglia, C. Csáki, C. Grojean and J. Terning, Curing the ills of Higgsless models: the S parameter and unitarity, Phys. Rev. D 71 (2005) 035015 [hep-ph/0409126] [SPIRES].ADSGoogle Scholar
  101. [101]
    R. Foadi, S. Gopalakrishna and C. Schmidt, Effects of fermion localization in Higgsless theories and electroweak constraints, Phys. Lett. B 606 (2005) 157 [hep-ph/0409266] [SPIRES].ADSGoogle Scholar
  102. [102]
    R.S. Chivukula, E.H. Simmons, H.-J. He, M. Kurachi and M. Tanabashi, Deconstructed Higgsless models with one-site delocalization, Phys. Rev. D 71 (2005) 115001 [hep-ph/0502162] [SPIRES].ADSGoogle Scholar
  103. [103]
    D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [SPIRES].ADSCrossRefGoogle Scholar
  104. [104]
    R. Contino and A. Pomarol, Holography for fermions, JHEP 11 (2004) 058 [hep-th/0406257] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  105. [105]
    Y. Grossman and M. Neubert, Neutrino masses and mixings in non-factorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [SPIRES].MathSciNetADSGoogle Scholar
  106. [106]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  107. [107]
    K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [SPIRES].ADSGoogle Scholar
  108. [108]
    K. Agashe, M. Papucci, G. Perez and D. Pirjol, Next to minimal flavor violation, hep-ph/0509117 [SPIRES].
  109. [109]
    G. Cacciapaglia et al., A GIM mechanism from extra dimensions, JHEP 04 (2008) 006 [arXiv:0709.1714] [SPIRES].ADSCrossRefGoogle Scholar
  110. [110]
    A.L. Fitzpatrick, G. Perez and L. Randall, Flavor from minimal flavor violation & a viable Randall-Sundrum model, arXiv:0710.1869 [SPIRES].
  111. [111]
    C. Csáki, A. Falkowski and A. Weiler, The flavor of the composite pseudo-Goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [SPIRES].ADSCrossRefGoogle Scholar
  112. [112]
    J. Santiago, Minimal flavor protection: a new flavor paradigm in warped models, JHEP 12 (2008) 046 [arXiv:0806.1230] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  113. [113]
    M. Blanke, A.J. Buras, B. Duling, S. Gori and A. Weiler, ΔF =2 observables and fine-tuning in a warped extra dimension with custodial protection, JHEP 03 (2009) 001 [arXiv:0809.1073] [SPIRES].ADSCrossRefGoogle Scholar
  114. [114]
    K. Agashe, A. Azatov and L. Zhu, Flavor violation tests of warped/composite SM in the two-site approach, Phys. Rev. D 79 (2009) 056006 [arXiv:0810.1016] [SPIRES].ADSGoogle Scholar
  115. [115]
    C. Csáki, G. Perez, Z. Surujon and A. Weiler, Flavor alignment via shining in RS, Phys. Rev. D 81 (2010) 075025 [arXiv:0907.0474] [SPIRES].ADSGoogle Scholar
  116. [116]
    S. Cullen, M. Perelstein and M.E. Peskin, TeV strings and collider probes of large extra dimensions, Phys. Rev. D 62 (2000) 055012 [hep-ph/0001166] [SPIRES].ADSGoogle Scholar
  117. [117]
    I. Antoniadis, K. Benakli and A. Laugier, Contact interactions in D-brane models, JHEP 05 (2001) 044 [hep-th/0011281] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  118. [118]
    S. Dimopoulos and R. Emparan, String balls at the LHC and beyond, Phys. Lett. B 526 (2002) 393 [hep-ph/0108060] [SPIRES].MathSciNetADSGoogle Scholar
  119. [119]
    P. Burikham, T. Han, F. Hussain and D.W. McKay, Bounds on four fermion contact interactions induced by string resonances, Phys. Rev. D 69 (2004) 095001 [hep-ph/0309132] [SPIRES].ADSGoogle Scholar
  120. [120]
    P. Burikham, T. Figy and T. Han, TeV-scale string resonances at hadron colliders, Phys. Rev. D 71 (2005) 016005 [hep-ph/0411094] [SPIRES].ADSGoogle Scholar
  121. [121]
    P. Meade and L. Randall, Black holes and quantum gravity at the LHC, JHEP 05 (2008) 003 [arXiv:0708.3017] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  122. [122]
    D. Lüst, Seeing through the string landscape — A string hunter’s companion in particle physics and cosmology, JHEP 03 (2009) 149 [arXiv:0904.4601] [SPIRES].ADSCrossRefGoogle Scholar
  123. [123]
    A.L. Fitzpatrick, J. Kaplan, L. Randall and L.-T. Wang, Searching for the Kaluza-Klein graviton in bulk RS models, JHEP 09 (2007) 013 [hep-ph/0701150] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  124. [124]
    K. Agashe, H. Davoudiasl, G. Perez and A. Soni, Warped gravitons at the LHC and beyond, Phys. Rev. D 76 (2007) 036006 [hep-ph/0701186] [SPIRES].ADSGoogle Scholar
  125. [125]
    J. Polchinski and M.J. Strassler, Deep inelastic scattering and gauge/string duality, JHEP 05 (2003) 012 [hep-th/0209211] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  126. [126]
    J. Polchinski and M.J. Strassler, Hard scattering and gauge/string duality, Phys. Rev. Lett. 88 (2002) 031601 [hep-th/0109174] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  127. [127]
    R.C. Brower, J. Polchinski, M.J. Strassler and C.-I. Tan, The Pomeron and gauge/string duality, JHEP 12 (2007) 005 [hep-th/0603115] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  128. [128]
    R.C. Brower, M.J. Strassler and C.-I. Tan, On the Pomeron at large ’t Hooft coupling, JHEP 03 (2009) 092 [arXiv:0710.4378] [SPIRES].ADSCrossRefGoogle Scholar
  129. [129]
    D.M. Hofman and J. Maldacena, Conformal collider physics: energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [SPIRES].ADSCrossRefGoogle Scholar
  130. [130]
    Y. Hatta, E. Iancu and A.H. Mueller, Jet evolution in the N = 4 SYM plasma at strong coupling, JHEP 05 (2008) 037 [arXiv:0803.2481] [SPIRES].ADSCrossRefGoogle Scholar
  131. [131]
    C. Csáki, M. Reece and J. Terning, The AdS/QCD correspondence: still undelivered, JHEP 05 (2009) 067 [arXiv:0811.3001] [SPIRES].ADSCrossRefGoogle Scholar
  132. [132]
    G.N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge U.K. (1922), pag. 816.MATHGoogle Scholar
  133. [133]
    M. Pak and H. Reinhardt, The Wilson loop from a Dyson equation, Phys. Rev. D 80 (2009) 125022 [arXiv:0910.2916] [SPIRES].ADSGoogle Scholar
  134. [134]
    N. Drukker and D.J. Gross, An exact prediction of N = 4 SUSYM theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [SPIRES].MathSciNetADSCrossRefMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Princeton Center for Theoretical SciencePrinceton UniversityPrincetonU.S.A.
  2. 2.Department of PhysicsPrinceton UniversityPrincetonU.S.A.

Personalised recommendations