Lovelock-Lifshitz black holes

  • M. H. Dehghani
  • R. B. Mann


In this paper, we investigate the existence of Lifshitz solutions in Lovelock gravity, both in vacuum and in the presence of a massive vector field. We show that the Lovelock terms can support the Lifshitz solution provided the constants of the theory are suitably chosen. We obtain an exact black hole solution with Lifshitz asymptotics of any scaling parameter z in both Gauss-Bonnet and in pure 3rd order Lovelock gravity. If matter is added in the form of a massive vector field, we also show that Lifshitz solutions in Lovelock gravity exist; these can be regarded as corrections to Einstein gravity coupled to this form of matter. For this form of matter we numerically obtain a broad range of charged black hole solutions with Lifshitz asymptotics, for either sign of the cosmological constant. We find that these asymptotic Lifshitz solutions are more sensitive to corrections induced by Lovelock gravity than are their asymptotic AdS counterparts. We also consider the thermodynamics of the black hole solutions and show that the temperature of large black holes with curved horizons is proportional to r 0 z where z is the critical exponent; this relationship holds for black branes of any size. As is the case for asymptotic AdS black holes, we find that an extreme black hole exists only for the case of horizons with negative curvature. We also find that these Lovelock-Lifshitz black holes have no unstable phase, in contrast to the Lovelock-AdS case. We also present a class of rotating Lovelock-Lifshitz black holes with Ricci-flat horizons.


Gauge-gravity correspondence Black Holes AdS-CFT Correspondence 


  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].MATHMathSciNetADSGoogle Scholar
  2. [2]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MATHMathSciNetGoogle Scholar
  3. [3]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    S.A. Hartnoll and P. Kovtun, Hall conductivity from dyonic black holes, Phys. Rev. D 76 (2007) 066001 [arXiv:0704.1160] [SPIRES].ADSGoogle Scholar
  7. [7]
    C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].Google Scholar
  8. [8]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality,Fermi surfaces and AdS2, arXiv:0907.2694 [SPIRES].
  9. [9]
    J. McGreevy, Holographic duality with a view toward many-body physics, arXiv:0909.0518 [SPIRES].
  10. [10]
    P. Koroteev and M. Libanov, On Existence of Self-Tuning Solutions in Static Braneworlds without Singularities, JHEP 02 (2008) 104 [arXiv:0712.1136] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    S. Kachru, X. Liu and M. Mulligan, Gravity Duals of Lifshitz-like Fixed Points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [SPIRES].
  13. [13]
    R.B. Mann, Lifshitz Topological Black Holes, JHEP 06 (2009) 075 [arXiv:0905.1136] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    G. Bertoldi, B.A. Burrington and A. Peet, Black Holes in asymptotically Lifshitz spacetimes with arbitrary critical exponent, Phys. Rev. D 80 (2009) 126003 [arXiv:0905.3183] [SPIRES].ADSGoogle Scholar
  15. [15]
    K. Balasubramanian and J. McGreevy, An analytic Lifshitz black hole, Phys. Rev. D 80 (2009) 104039 [arXiv:0909.0263] [SPIRES].ADSGoogle Scholar
  16. [16]
    U.H. Danielsson and L. Thorlacius, Black holes in asymptotically Lifshitz spacetime, JHEP 03 (2009) 070 [arXiv:0812.5088] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Lifshitz Black Hole in Three Dimensions, Phys. Rev. D 80 (2009) 104029 [arXiv:0909.1347] [SPIRES].ADSGoogle Scholar
  18. [18]
    E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Analytic Lifshitz black holes in higher dimensions, JHEP 04 (2010) 030 [arXiv:1001.2361] [SPIRES].CrossRefGoogle Scholar
  19. [19]
    R.-G. Cai, Y. Liu and Y.-W. Sun, A Lifshitz Black Hole in Four Dimensional R 2 Gravity, JHEP 10 (2009) 080 [arXiv:0909.2807] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    D.-W. Pang, On Charged Lifshitz Black Holes, JHEP 01 (2010) 116 [arXiv:0911.2777] [SPIRES].CrossRefGoogle Scholar
  21. [21]
    M.H. Dehghani and Z. Dayyani, Lorentzian wormholes in Lovelock gravity, Phys. Rev. D 79 (2009) 064010 [arXiv:0903.4262] [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    J. de Boer, M. Kulaxizi and A. Parnachev, Holographic Lovelock Gravities and Black Holes, JHEP 06 (2010) 008 [arXiv:0912.1877] [SPIRES].CrossRefGoogle Scholar
  23. [23]
    X.O. Camanho and J.D. Edelstein, Causality in AdS/CFT and Lovelock theory, arXiv:0912.1944 [SPIRES].
  24. [24]
    R.C. Myers, M.F. Paulos and A. Sinha, Holographic studies of quasi-topological gravity, arXiv:1004.2055 [SPIRES].
  25. [25]
    D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  26. [26]
    D.G. Boulware and S. Deser, String Generated Gravity Models, Phys. Rev. Lett. 55 (1985) 2656 [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    G. Dotti, J. Oliva and R. Troncoso, Exact solutions for the Einstein-Gauss-Bonnet theory in five dimensions: Black holes, wormholes and spacetime horns, Phys. Rev. D 76 (2007) 064038 [arXiv:0706.1830] [SPIRES].MathSciNetADSGoogle Scholar
  28. [28]
    M.H. Dehghani and M. Shamirzaie, Thermodynamics of asymptotic flat charged black holes in third order Lovelock gravity, Phys. Rev. D 72 (2005) 124015 [hep-th/0506227] [SPIRES].ADSGoogle Scholar
  29. [29]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [SPIRES].MathSciNetADSGoogle Scholar
  30. [30]
    S.F. Ross and O. Saremi, Holographic stress tensor for non-relativistic theories, JHEP 09 (2009) 009 [arXiv:0907.1846] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    G. Bertoldi, B.A. Burrington and A.W. Peet, Thermodynamics of black branes in asymptotically Lifshitz spacetimes, Phys. Rev. D 80 (2009) 126004 [arXiv:0907.4755] [SPIRES].ADSGoogle Scholar
  32. [32]
    J. Stachel, Globally stationary but locally static space-times: A gravitational analog of the Aharonov-Bohm effect, Phys. Rev. D 26 (1982) 1281 [SPIRES].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of WaterlooWaterlooCanada
  2. 2.Physics Department and Biruni ObservatoryCollege of Sciences, Shiraz UniversityShirazIran

Personalised recommendations