Logarithmic correction to BH entropy as Noether charge



We consider the role of the type-A trace anomaly in static black hole solutions to semiclassical Einstein equations in four dimensions. Via Wald’s Noether charge formalism, we compute the contribution to the entropy coming from the anomaly induced effective action and unveil a logarithmic correction to the Bekenstein-Hawking area law. The corrected entropy is given by a seemingly universal formula
$$ {S_{\text{bh}}} = \frac{{{\mathcal{A}_\mathcal{H}}}}{4} - a \cdot {\mathcal{X}_\mathcal{H}} \cdot {\phi_\mathcal{H}} $$
involving the coefficient a of the type-A trace anomaly, the Euler characteristic \( {\mathcal{X}_\mathcal{H}} \) of the horizon and the value at the horizon \( {\phi_\mathcal{H}} \) of the solution to the uniformization problem for Q-curvature. Two instances are examined in detail: Schwarzschild and a four-dimensional massless topological black hole. We also find agreement with the logarithmic correction due to one-loop contribution of conformal fields in the Schwarzschild background.


Black Holes Anomalies in Field and String Theories 


  1. [1]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    M. Bañados, C. Teitelboim and J. Zanelli, Black hole entropy and the dimensional continuation of the Gauss-Bonnet theorem, Phys. Rev. Lett. 72 (1994) 957 [gr-qc/9309026] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  3. [3]
    V. Iyer and R.M. Wald, A comparison of Noether charge and euclidean methods for computing the entropy of stationary black holes, Phys. Rev. D 52 (1995) 4430 [gr-qc/9503052] [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    W. Nelson, A Comment on black hole entropy in string theory, Phys. Rev. D 50 (1994) 7400 [hep-th/9406011] [SPIRES].ADSGoogle Scholar
  5. [5]
    S. Carlip, Black hole thermodynamics and statistical mechanics, Lect. Notes Phys. 769 (2009) 89 [arXiv:0807.4520] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    A. Ashtekar, J. Baez, A. Corichi and K. Krasnov, Quantum geometry and black hole entropy, Phys. Rev. Lett. 80 (1998) 904 [gr-qc/9710007] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  8. [8]
    D.V. Fursaev, Can one understand black hole entropy without knowing much about quantum gravity?, Phys. Part. Nucl. 36 (2005) 81 [Fiz. Elem. Chast. Atom. Yadra 36 (2005) 146] [gr-qc/0404038] [SPIRES].Google Scholar
  9. [9]
    S. Carlip, Black hole entropy from conformal field theory in any dimension, Phys. Rev. Lett. 82 (1999) 2828 [hep-th/9812013] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  10. [10]
    S. Carlip, Black hole entropy and the problem of universality, arXiv:0807.4192 [SPIRES].
  11. [11]
    S. Carlip, Logarithmic corrections to black hole entropy from the Cardy formula, Class. Quant. Grav. 17 (2000) 4175 [gr-qc/0005017] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  12. [12]
    A.J.M. Medved, A comment on black hole entropy or why nature abhors a logarithm, Class. Quant. Grav. 22 (2005) 133 [gr-qc/0406044] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  13. [13]
    D.N. Page, Hawking radiation and black hole thermodynamics, New J. Phys. 7 (2005) 203 [hep-th/0409024] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    D.V. Fursaev, Temperature and entropy of a quantum black hole and conformal anomaly, Phys. Rev. D 51 (1995) 5352 [hep-th/9412161] [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    R.B. Mann and S.N. Solodukhin, Universality of quantum entropy for extreme black holes, Nucl. Phys. B 523 (1998) 293 [hep-th/9709064] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    R.K. Kaul and P. Majumdar, Logarithmic correction to the Bekenstein-Hawking entropy, Phys. Rev. Lett. 84 (2000) 5255 [gr-qc/0002040] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    T.R. Govindarajan, R.K. Kaul and V. Suneeta, Logarithmic correction to the Bekenstein-Hawking entropy of the BTZ black hole, Class. Quant. Grav. 18 (2001) 2877 [gr-qc/0104010] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  18. [18]
    R. Banerjee and B.R. Majhi, Quantum tunneling, trace anomaly and effective metric, Phys. Lett. B 674 (2009) 218 [arXiv:0808.3688] [SPIRES].MathSciNetADSGoogle Scholar
  19. [19]
    R. Banerjee and S.K. Modak, Exact differential and corrected area law for stationary black holes in tunneling method, JHEP 05 (2009) 063 [arXiv:0903.3321] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    R.-G. Cai, L.-M. Cao and N. Ohta, Black holes in gravity with conformal anomaly and logarithmic term in black hole entropy, JHEP 04 (2010) 082 [arXiv:0911.4379] [SPIRES].CrossRefGoogle Scholar
  21. [21]
    N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge University Press, Cambridge U.K. (1982), pag. 340.MATHGoogle Scholar
  22. [22]
    R. Balbinot, A. Fabbri and I.L. Shapiro, Vacuum polarization in Schwarzschild space-time by anomaly induced effective actions, Nucl. Phys. B 559 (1999) 301 [hep-th/9904162] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    E. Mottola and R. Vaulin, Macroscopic effects of the quantum trace anomaly, Phys. Rev. D 74 (2006) 064004 [gr-qc/0604051] [SPIRES].ADSGoogle Scholar
  24. [24]
    S. Deser and A. Schwimmer, Geometric classification of conformal anomalies in arbitrary dimensions, Phys. Lett. B 309 (1993) 279 [hep-th/9302047] [SPIRES].MathSciNetADSGoogle Scholar
  25. [25]
    A.M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B 103 (1981) 207 [SPIRES].MathSciNetADSGoogle Scholar
  26. [26]
    T. Branson and B. Ørsted, Explicit functional determinants in four dimensions, Proc. Amer. Math. Soc. 113 (1991) 669.MATHMathSciNetGoogle Scholar
  27. [27]
    S.M. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-riemannian manifolds (summary), SIGMA 4 (2008) 036.MathSciNetGoogle Scholar
  28. [28]
    R.J. Riegert, A nonlocal action for the trace anomaly, Phys. Lett. B 134 (1984) 56 [SPIRES].MathSciNetADSGoogle Scholar
  29. [29]
    C.R. Graham, R. Jenne, L.J. Manson and G.A.J. Sparling, Conformally invariant powers of the Laplacian. I. Existence, J. London Math. Soc. 46 (1992) 557.MATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    T. Branson, The functional determinant, Lecture Note Series volume 4, Global Analysis Research Center, Seoul National University, Seoul Republic of Korea (1993).Google Scholar
  31. [31]
    T. Branson, Sharp inequalities, the functional determinant, and the complementary series, Trans. Amer. Math. Soc. 347 (1995) 3671.MATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    R. Olea, Regularization of odd-dimensional AdS gravity: kounterterms, JHEP 04 (2007) 073 [hep-th/0610230] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    T. Jacobson and R.C. Myers, Black hole entropy and higher curvature interactions, Phys. Rev. Lett. 70 (1993) 3684 [hep-th/9305016] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  34. [34]
    R. Aros, Gravitational charges: a covariant phase space analysis in even dimensions, gr-qc/0011009 [SPIRES].
  35. [35]
    T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587 [gr-qc/9312023] [SPIRES].MathSciNetADSGoogle Scholar
  36. [36]
    S.M. Christensen and M.J. Duff, Axial and conformal anomalies for arbitrary spin in gravity and supergravity, Phys. Lett. B 76 (1978) 571 [SPIRES].ADSGoogle Scholar
  37. [37]
    S.N. Solodukhin, Entropy of Schwarzschild black hole and string-black hole correspondence, Phys. Rev. D 57 (1998) 2410 [hep-th/9701106] [SPIRES].MathSciNetADSGoogle Scholar
  38. [38]
    R. Aros, R. Troncoso and J. Zanelli, Black holes with topologically nontrivial AdS asymptotics, Phys. Rev. D 63 (2001) 084015 [hep-th/0011097] [SPIRES].MathSciNetADSGoogle Scholar
  39. [39]
    A. Malchiodi, Conformal metrics with constant Q-curvature, SIGMA 3 (2001) 120.MathSciNetGoogle Scholar
  40. [40]
    R.-G. Cai, L.-M. Cao and N. Ohta, Topological black holes in Hořava-Lifshitz gravity, Phys. Rev. D 80 (2009) 024003 [arXiv:0904.3670] [SPIRES].MathSciNetADSGoogle Scholar
  41. [41]
    R.C. Myers, Black hole entropy in two-dimensions, Phys. Rev. D 50 (1994) 6412 [hep-th/9405162] [SPIRES].ADSGoogle Scholar
  42. [42]
    P. Ramond, Field theory. A modern primer, Front. Phys. 51 (1981) 1 [SPIRES].MathSciNetGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Universidad Andrés Bello, Departamento de Ciencias FísicasSantiagoChile

Personalised recommendations