Unwinding of strings thrown into a fuzzball

  • Stefano Giusto
  • Samir D. Mathur


The traditional black hole has a horizon, with a singularity inside the horizon. But actual microstates of black holes are ‘fuzzballs’, with no horizon and a complex internal structure. We take the simplest hole in string theory—the extremal 2-charge D1D5 hole— and study a simple effect that is a consequence of this internal structure of the fuzzball. Suppose we have a NS1 string wrapping the compact circle of the fuzzball solution. In the traditional black hole solution this circle is directly tensored with the remaining directions, and does not shrink to zero size. Thus a part of the string can fall behind the horizon, but not ‘unwind’. In the fuzzball geometry, this circle makes a nontrivial geometric structure — the KK monople — by mixing with the other directions, and thus shrinks to zero at the core of the monopole. Thus the string can ‘unwind’ in the fuzzball geometry, and the winding charge is then manifested by a nontrivial field strength living on the microstate solution. We compute this field strength for a generic microstate, and comment briefly on the physics suggested by the unwinding process.


Black Holes in String Theory Black Holes 


  1. [1]
    O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox, Nucl. Phys. B 623 (2002) 342 [hep-th/0109154] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    O. Lunin and S.D. Mathur, Statistical interpretation of Bekenstein entropy for systems with a stretched horizon, Phys. Rev. Lett. 88 (2002) 211303 [hep-th/0202072] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    O. Lunin, J.M. Maldacena and L. Maoz, Gravity solutions for the D1-D5 system with angular momentum, hep-th/0212210 [SPIRES].
  4. [4]
    I. Kanitscheider, K. Skenderis and M. Taylor, Fuzzballs with internal excitations, JHEP 06 (2007) 056 [arXiv:0704.0690] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    O. Lunin and S.D. Mathur, The slowly rotating near extremal D1-D5 system as a ‘hot tube’, Nucl. Phys. B 615 (2001) 285 [hep-th/0107113] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    S.D. Mathur, A. Saxena and Y.K. Srivastava, Constructing ‘hair’ for the three charge hole, Nucl. Phys. B 680 (2004) 415 [hep-th/0311092] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    O. Lunin, Adding momentum to D1-D5 system, JHEP 04 (2004) 054 [hep-th/0404006] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    S. Giusto, S.D. Mathur and A. Saxena, Dual geometries for a set of 3-charge microstates, Nucl. Phys. B 701 (2004) 357 [hep-th/0405017] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    S. Giusto, S.D. Mathur and A. Saxena, 3-charge geometries and their CFT duals, Nucl. Phys. B 710 (2005) 425 [hep-th/0406103] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    I. Bena and N.P. Warner, One ring to rule them alland in the darkness bind them?, Adv. Theor. Math. Phys. 9 (2005) 667 [hep-th/0408106] [SPIRES].MATHMathSciNetGoogle Scholar
  11. [11]
    V. Jejjala, O. Madden, S.F. Ross and G. Titchener, Non-supersymmetric smooth geometries and D1-D5-P bound states, Phys. Rev. D 71 (2005) 124030 [hep-th/0504181] [SPIRES].ADSMathSciNetGoogle Scholar
  12. [12]
    I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [SPIRES].ADSMathSciNetGoogle Scholar
  13. [13]
    P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP 06 (2006) 007 [hep-th/0505167] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    M. Taylor, General 2 charge geometries, JHEP 03 (2006) 009 [hep-th/0507223] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    A. Saxena, G. Potvin, S. Giusto and A.W. Peet, Smooth geometries with four charges in four dimensions, JHEP 04 (2006) 010 [hep-th/0509214] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    I. Bena, C.-W. Wang and N.P. Warner, The foaming three-charge black hole, Phys. Rev. D 75 (2007) 124026 [hep-th/0604110] [SPIRES].ADSMathSciNetGoogle Scholar
  17. [17]
    V. Balasubramanian, E.G. Gimon and T.S. Levi, Four Dimensional Black Hole Microstates: From D-branes to Spacetime Foam, JHEP 01 (2008) 056 [hep-th/0606118] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    I. Bena, C.-W. Wang and N.P. Warner, Mergers and Typical Black Hole Microstates, JHEP 11 (2006) 042 [hep-th/0608217] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    K. Skenderis and M. Taylor, Fuzzball solutions and D1-D5 microstates, Phys. Rev. Lett. 98 (2007) 071601 [hep-th/0609154] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    J. Ford, S. Giusto and A. Saxena, A class of BPS time-dependent 3-charge microstates from spectral flow, Nucl. Phys. B 790 (2008) 258 [hep-th/0612227] [SPIRES].ADSMathSciNetGoogle Scholar
  21. [21]
    I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys. 755 (2008) 1 [hep-th/0701216] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    I. Bena, N. Bobev and N.P. Warner, Bubbles on Manifolds with a U(1) Isometry, JHEP 08 (2007) 004 [arXiv:0705.3641] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    E.G. Gimon and T.S. Levi, Black Ring Deconstruction, JHEP 04 (2008) 098 [arXiv:0706.3394] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    I. Bena, C.-W. Wang and N.P. Warner, Plumbing the Abyss: Black Ring Microstates, JHEP 07 (2008) 019 [arXiv:0706.3786] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    V. Cardoso, O.J.C. Dias and R.C. Myers, On the gravitational stability of D1-D5-P black holes, Phys. Rev. D 76 (2007) 105015 [arXiv:0707.3406] [SPIRES].ADSMathSciNetGoogle Scholar
  26. [26]
    S. Giusto, S.F. Ross and A. Saxena, Non-supersymmetric microstates of the D1-D5-KK system, JHEP 12 (2007) 065 [arXiv:0708.3845] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    B.D. Chowdhury and S.D. Mathur, Radiation from the non-extremal fuzzball, Class. Quant. Grav. 25 (2008) 135005 [arXiv:0711.4817] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept. 467 (2008) 117 [arXiv:0804.0552] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    I. Bena, N. Bobev, C. Ruef and N.P. Warner, Entropy Enhancement and Black Hole Microstates, arXiv:0804.4487 [SPIRES].
  30. [30]
    B.D. Chowdhury and S.D. Mathur, Pair creation in non-extremal fuzzball geometries, Class. Quant. Grav. 25 (2008) 225021 [arXiv:0806.2309] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    J. de Boer, S. El-Showk, I. Messamah and D. Van den Bleeken, Quantizing N = 2 Multicenter Solutions, JHEP 05 (2009) 002 [arXiv:0807.4556] [SPIRES].CrossRefGoogle Scholar
  32. [32]
    B.D. Chowdhury and S.D. Mathur, Non-extremal fuzzballs and ergoregion emission, Class. Quant. Grav. 26 (2009) 035006 [arXiv:0810.2951] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    V. Balasubramanian, J. de Boer, S. El-Showk and I. Messamah, Black Holes as Effective Geometries, Class. Quant. Grav. 25 (2008) 214004 [arXiv:0811.0263] [SPIRES].ADSCrossRefGoogle Scholar
  34. [34]
    I. Bena, N. Bobev, C. Ruef and N.P. Warner, Supertubes in Bubbling Backgrounds: Born-Infeld Meets Supergravity, JHEP 07 (2009) 106 [arXiv:0812.2942] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    S.G. Avery and B.D. Chowdhury, Emission from the D1D5 CFT: Higher Twists, arXiv:0907.1663 [SPIRES].
  36. [36]
    J.H. Al-Alawi and S.F. Ross, Spectral Flow of the Non-Supersymmetric Microstates of the D1-D5-KK System, JHEP 10 (2009) 082 [arXiv:0908.0417] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    I. Bena, S. Giusto, C. Ruef and N.P. Warner, A (Running) Bolt for New Reasons, JHEP 11 (2009) 089 [arXiv:0909.2559] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    N. Bobev and C. Ruef, The Nuts and Bolts of Einstein-Maxwell Solutions, JHEP 01 (2010) 124 [arXiv:0912.0010] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    S.G. Avery, B.D. Chowdhury and S.D. Mathur, Emission from the D1D5 CFT, JHEP 10 (2009) 065 [arXiv:0906.2015] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    S. Giusto, J.F. Morales and R. Russo, D1D5 microstate geometries from string amplitudes, JHEP 03 (2010) 130 [arXiv:0912.2270] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    S.D. Mathur, The fuzzball proposal for black holes: An elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [SPIRES].ADSMATHCrossRefMathSciNetGoogle Scholar
  42. [42]
    S.D. Mathur, The quantum structure of black holes, Class. Quant. Grav. 23 (2006) R115 [hep-th/0510180] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  43. [43]
    R. Gregory, J.A. Harvey and G.W. Moore, Unwinding strings and T-duality of Kaluza-Klein and H-monopoles, Adv. Theor. Math. Phys. 1 (1997) 283 [hep-th/9708086] [SPIRES].MATHMathSciNetGoogle Scholar
  44. [44]
    A. Sen, Extremal black holes and elementary string states, Mod. Phys. Lett. A 10 (1995) 2081 [hep-th/9504147] [SPIRES].ADSGoogle Scholar
  45. [45]
    O. Lunin, S.D. Mathur and A. Saxena, What is the gravity dual of a chiral primary?, Nucl. Phys. B 655 (2003) 185 [hep-th/0211292] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  46. [46]
    A. Dabholkar, Exact counting of black hole microstates, Phys. Rev. Lett. 94 (2005) 241301 [hep-th/0409148] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  47. [47]
    A. Dabholkar, R. Kallosh and A. Maloney, A stringy cloak for a classical singularity, JHEP 12 (2004) 059 [hep-th/0410076] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  48. [48]
    S. Giusto and S.D. Mathur, Fuzzball geometries and higher derivative corrections for extremal holes, Nucl. Phys. B 738 (2006) 48 [hep-th/0412133] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  49. [49]
    A. Sen, Two Charge System Revisited: Small Black Holes or Horizonless Solutions?, JHEP 05 (2010) 097 [arXiv:0908.3402] [SPIRES].ADSCrossRefGoogle Scholar
  50. [50]
    K.S. Thorne, R.H. Price and D.A. Macdonald, Black holes: the membrane paradigm, Yale University Press, New Haven, U.S.A. (1986).Google Scholar
  51. [51]
    S.D. Mathur, Black hole size and phase space volumes, arXiv:0706.3884 [SPIRES].
  52. [52]
    V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, The library of Babel: On the origin of gravitational thermodynamics, JHEP 12 (2005) 006 [hep-th/0508023] [SPIRES].ADSGoogle Scholar
  53. [53]
    S.R. Das and G. Mandal, Microstate Dependence of Scattering from the D1-D5 System, JHEP 04 (2009) 036 [arXiv:0812.1358] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique et Hautes EnergiesUniversité Pierre et Marie Curie — Paris 6Paris cedex 05France
  2. 2.Department of PhysicsThe Ohio State UniversityColumbusU.S.A.

Personalised recommendations