Skip to main content
Log in

A model with chiral quarks of electric charges −4/3 and 5/3

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present a new model based on the SU(3)⨂SU(2)⨂U(1) symmetry, in which there is a new consistent set of chiral fermion fields that renders the model free from anomalies. The new fermions do not share the usual family structure of the Standard Model and some of them have exotic electric charges, as the quarks X and Y with electric charge 5/3 and −4/3, respectively. Interestingly, the model contains a new heavy neutral lepton which may be a dark matter candidate. Two Higgs doublets are present in our construction, so that two CP even scalars are present in the model particle spectrum. One of them is similar to the Standard Model Higgs boson, while the other one couples mainly with the new exotic fermions. We performed a discovery analysis showing that the 8 TeV LHC can find the Y quark from single and pair production with masses from 300 GeV up to ~ 750 GeV. We also show that the new spectrum does not contribute significantly to the oblique EW parameters, and that dangerous flavor changing neutral currents are suppressed. Characteristic signatures from the other new fermions in the model are also commented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  3. A. Djouadi and A. Lenz, Sealing the fate of a fourth generation of fermions, Phys. Lett. B 715 (2012) 310 [arXiv:1204.1252] [INSPIRE].

    ADS  Google Scholar 

  4. E. Kuflik, Y. Nir and T. Volansky, Implications of Higgs searches on the four generation Standard Model, arXiv:1204.1975 [INSPIRE].

  5. J. Erler and P. Langacker, Precision constraints on extra fermion generations, Phys. Rev. Lett. 105 (2010) 031801 [arXiv:1003.3211] [INSPIRE].

    Article  ADS  Google Scholar 

  6. M.S. Chanowitz, Bounding CKM mixing with a fourth family, Phys. Rev. D 79 (2009) 113008 [arXiv:0904.3570] [INSPIRE].

    ADS  Google Scholar 

  7. M. Bobrowski, A. Lenz, J. Riedl and J. Rohrwild, How much space is left for a new family of fermions?, Phys. Rev. D 79 (2009) 113006 [arXiv:0902.4883] [INSPIRE].

    ADS  Google Scholar 

  8. O. Eberhardt, A. Lenz and J. Rohrwild, Less space for a new family of fermions, Phys. Rev. D 82 (2010) 095006 [arXiv:1005.3505] [INSPIRE].

    ADS  Google Scholar 

  9. A.J. Buras et al., Patterns of flavour violation in the presence of a fourth generation of quarks and leptons, JHEP 09 (2010) 106 [arXiv:1002.2126] [INSPIRE].

    Article  ADS  Google Scholar 

  10. W.-S. Hou and C.-Y. Ma, Flavor and CP-violation with fourth generations revisited, Phys. Rev. D 82 (2010) 036002 [arXiv:1004.2186] [INSPIRE].

    ADS  Google Scholar 

  11. A. Soni, A.K. Alok, A. Giri, R. Mohanta and S. Nandi, SM with four generations: selected implications for rare B and K decays, Phys. Rev. D 82 (2010) 033009 [arXiv:1002.0595] [INSPIRE].

    ADS  Google Scholar 

  12. CMS collaboration, Combined search for the quarks of a sequential fourth generation, Phys. Rev. D 86 (2012) 112003 [arXiv:1209.1062] [INSPIRE].

  13. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

  14. F. Pisano and V. Pleitez, An SU(3) × U(1) model for electroweak interactions, Phys. Rev. D 46 (1992) 410 [hep-ph/9206242] [INSPIRE].

    ADS  Google Scholar 

  15. P. Frampton, Chiral dilepton model and the flavor question, Phys. Rev. Lett. 69 (1992) 2889 [INSPIRE].

    Article  ADS  Google Scholar 

  16. A. Alves, E.R. Barreto and A. Dias, Jets plus same-sign dileptons signatures from fermionic leptoquarks at the LHC, Phys. Rev. D 86 (2012) 055025 [arXiv:1203.2342] [INSPIRE].

    ADS  Google Scholar 

  17. P.H. Frampton, P. Hung and M. Sher, Quarks and leptons beyond the third generation, Phys. Rept. 330 (2000) 263 [hep-ph/9903387] [INSPIRE].

    Article  ADS  Google Scholar 

  18. R. Contino and G. Servant, Discovering the top partners at the LHC using same-sign dilepton final states, JHEP 06 (2008) 026 [arXiv:0801.1679] [INSPIRE].

    Article  ADS  Google Scholar 

  19. G. Burdman, L. Da Rold, O. Eboli and R.D. Matheus, Strongly coupled fourth generation at the LHC, Phys. Rev. D 79 (2009) 075026 [arXiv:0812.0368] [INSPIRE].

    ADS  Google Scholar 

  20. J. Aguilar-Saavedra, Identifying top partners at LHC, JHEP 11 (2009) 030 [arXiv:0907.3155] [INSPIRE].

    Article  ADS  Google Scholar 

  21. G. Cacciapaglia et al., Heavy vector-like top partners at the LHC and flavour constraints, JHEP 03 (2012) 070 [arXiv:1108.6329] [INSPIRE].

    Article  ADS  Google Scholar 

  22. G. Cacciapaglia, A. Deandrea, L. Panizzi, S. Perries and V. Sordini, Heavy vector-like quark with charge 5/3 at the LHC, JHEP 03 (2013) 004 [arXiv:1211.4034] [INSPIRE].

    Article  ADS  Google Scholar 

  23. S.S. Law, Constraints on exotic lepton doublets with minimal coupling to the Standard Model, JHEP 02 (2012) 127 [arXiv:1106.0375] [INSPIRE].

    Article  ADS  Google Scholar 

  24. C.-K. Chua and S.S. Law, Phenomenological constraints on minimally coupled exotic lepton triplets, Phys. Rev. D 83 (2011) 055010 [arXiv:1011.4730] [INSPIRE].

    ADS  Google Scholar 

  25. J.E. Cieza Montalvo and P.P. de Queiroz Filho, Exotic heavy leptons predicted by extended models at the CERN LHC, Phys. Rev. D 66 (2002) 055003 [INSPIRE].

    ADS  Google Scholar 

  26. Y. Okada and L. Panizzi, LHC signatures of vector-like quarks, Adv. High Energy Phys. 2013 (2013) 364936 [arXiv:1207.5607] [INSPIRE].

    Google Scholar 

  27. M. Buchkremer, G. Cacciapaglia, A. Deandrea and L. Panizzi, Model independent framework for searches of top partners, arXiv:1305.4172 [INSPIRE].

  28. D0 collaboration, V. Abazov et al., Experimental discrimination between charge 2e/3 top quark and charge 4e/3 exotic quark production scenarios, Phys. Rev. Lett. 98 (2007) 041801 [hep-ex/0608044] [INSPIRE].

  29. CDF collaboration, T. Aaltonen et al., Exclusion of an exotic top quark with −4/3 electric charge using soft lepton tagging, Phys. Rev. Lett. 105 (2010) 101801 [arXiv:1006.4597] [INSPIRE].

  30. ATLAS collaboration, Search for exotic same-sign dilepton signatures (b quark, T 5/3 and four top quarks production) in 4.7 fb−1 of pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, ATLAS-CONF-2012-130, CERN, Geneva Switzerland (2012).

  31. ATLAS collaboration, Search for a heavy top-quark partner in final states with two leptons with the ATLAS detector at the LHC, JHEP 11 (2012) 094 [arXiv:1209.4186] [INSPIRE].

  32. CMS collaboration, Search for a heavy partner of the top quark with charge 5/3, CMS-PAS-B2G-12-003, CERN, Geneva Switzerland (2012).

  33. W.J. Waalewijn, Calculating the charge of a jet, Phys. Rev. D 86 (2012) 094030 [arXiv:1209.3019] [INSPIRE].

    ADS  Google Scholar 

  34. K. Harigaya, S. Matsumoto, M.M. Nojiri and K. Tobioka, Search for the top partner at the LHC using multi-b-jet channels, Phys. Rev. D 86 (2012) 015005 [arXiv:1204.2317] [INSPIRE].

    ADS  Google Scholar 

  35. CDF collaboration, T. Aaltonen et al., Exclusion of exotic top-like quarks with −4/3 electric charge using jet-charge tagging in single-lepton tt events at CDF, arXiv:1304.4141 [INSPIRE].

  36. C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [Erratum ibid. 390 (2004) 553] [hep-ph/0203079] [INSPIRE].

  37. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  38. H.-J. He, N. Polonsky and S.-F. Su, Extra families, Higgs spectrum and oblique corrections, Phys. Rev. D 64 (2001) 053004 [hep-ph/0102144] [INSPIRE].

    Google Scholar 

  39. Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

  40. M.S. Chanowitz, M. Furman and I. Hinchliffe, Weak interactions of ultraheavy fermions. 2, Nucl. Phys. B 153 (1979) 402 [INSPIRE].

    Article  ADS  Google Scholar 

  41. D.A. Dicus and H.-J. He, Scales of fermion mass generation and electroweak symmetry breaking, Phys. Rev. D 71 (2005) 093009 [hep-ph/0409131] [INSPIRE].

    ADS  Google Scholar 

  42. V.D. Barger, K.-M. Cheung, T. Han and R. Phillips, Strong W + W + scattering signals at pp supercolliders, Phys. Rev. D 42 (1990) 3052 [INSPIRE].

    ADS  Google Scholar 

  43. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  44. A. Alloul, J. D’Hondt, K. De Causmaecker, B. Fuks and M.R. de Traubenberg, Automated mass spectrum generation for new physics, Eur. Phys. J. C 73 (2013) 2325 [arXiv:1301.5932] [INSPIRE].

    ADS  Google Scholar 

  45. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  46. PGS 4: Pretty Good Simulation of high energy collisions webpage, http://www.physics.ucdavis.edu/~conway/research/software/pgs/pgs4-general.htm.

  47. M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013 [hep-ph/0611129] [INSPIRE].

  48. S. Bityukov and N. Krasnikov, On observability of signal over background, in Proceedings of the Workshop on Confidence Limits, CERN Yellow Report, CERN-2000-005, CERN, Geneva Switzerland (2000), pg. 219.

  49. J. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer and M. Pérez-Victoria, A handbook of vector-like quarks: mixing and single production, arXiv:1306.0572 [INSPIRE].

  50. B.W. Lee and R.E. Shrock, Natural suppression of symmetry violation in gauge theories: muon-lepton and electron lepton number nonconservation, Phys. Rev. D 16 (1977) 1444 [INSPIRE].

    ADS  Google Scholar 

  51. J. Schechter and J. Valle, Neutrino decay and spontaneous violation of lepton number, Phys. Rev. D 25 (1982) 774 [INSPIRE].

    ADS  Google Scholar 

  52. H. Hettmansperger, M. Lindner and W. Rodejohann, Phenomenological consequences of sub-leading terms in see-saw formulas, JHEP 04 (2011) 123 [arXiv:1102.3432] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Alves.

Additional information

ArXiv ePrint: 1306.1275

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alves, A., Barreto, E.R., Camargo, D.A. et al. A model with chiral quarks of electric charges −4/3 and 5/3. J. High Energ. Phys. 2013, 129 (2013). https://doi.org/10.1007/JHEP07(2013)129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)129

Keywords

Navigation