Skip to main content
Log in

Decoupling constant for α s and the effective gluon-Higgs coupling to three loops in supersymmetric QCD

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We compute the three-loop QCD corrections to the decoupling constant for α s which relates the Minimal Supersymmetric Standard Model to Quantum Chromodynamics with five or six active flavours. The new results can be used to study the stability of α s evaluated at a high scale from the knowledge of its value at M Z. We furthermore derive a low-energy theorem which allows the calculation of the coefficient function of the effective Higgs boson-gluon operator from the decoupling constant. This constitutes the first independent check of the matching coefficient to three loops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weinberg, Effective Gauge Theories, Phys. Lett. B 91 (1980) 51 [INSPIRE].

    ADS  Google Scholar 

  2. W. Bernreuther and W. Wetzel, Decoupling of Heavy Quarks in the Minimal Subtraction Scheme, Nucl. Phys. B 197 (1982) 228 [Erratum ibid. B 513 (1998) 758] [INSPIRE].

    Article  ADS  Google Scholar 

  3. S. Larin, T. van Ritbergen and J. Vermaseren, The Large quark mass expansion of Γ(Z 0hadrons) and Γ(τ ν τ + hadrons) in the order \(\alpha_{^S}^3\), Nucl. Phys. B 438 (1995) 278 [hep-ph/9411260] [INSPIRE].

    Article  ADS  Google Scholar 

  4. K. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to \(O\left( {\alpha_{^{\text{s}}}^3} \right)\) and their connection to low-energy theorems, Nucl. Phys. B 510 (1998) 61 [hep-ph/9708255] [INSPIRE].

    ADS  Google Scholar 

  5. Y. Schröder and M. Steinhauser, Four-loop decoupling relations for the strong coupling, JHEP 01 (2006) 051 [hep-ph/0512058] [INSPIRE].

    Article  ADS  Google Scholar 

  6. K. Chetyrkin, J.H. Kuhn and C. Sturm, QCD decoupling at four loops, Nucl. Phys. B 744 (2006) 121 [hep-ph/0512060] [INSPIRE].

    Article  ADS  Google Scholar 

  7. A.G. Grozin, M. Hoeschele, J. Hoff and M. Steinhauser, Simultaneous decoupling of bottom and charm quarks, JHEP 09 (2011) 066 [arXiv:1107.5970] [INSPIRE].

    Article  ADS  Google Scholar 

  8. R. Harlander, L. Mihaila and M. Steinhauser, Two-loop matching coefficients for the strong coupling in the MSSM, Phys. Rev. D 72 (2005) 095009 [hep-ph/0509048] [INSPIRE].

    ADS  Google Scholar 

  9. R. Harlander, L. Mihaila and M. Steinhauser, Running of α s and m b in the MSSM, Phys. Rev. D 76 (2007) 055002 [arXiv:0706.2953] [INSPIRE].

    ADS  Google Scholar 

  10. A. Bauer, L. Mihaila and J. Salomon, Matching coefficients for α s and m b to \(O\left( {\alpha_{^{\text{s}}}^2} \right)\) in the MSSM, JHEP 02 (2009) 037 [arXiv:0810.5101] [INSPIRE].

    Article  ADS  Google Scholar 

  11. J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A Phenomenological Profile of the Higgs Boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].

    ADS  Google Scholar 

  12. M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-Energy Theorems for Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys. 30 (1979) 711 [INSPIRE].

    Google Scholar 

  13. B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys. C 69 (1995) 77 [hep-ph/9505225] [INSPIRE].

    Google Scholar 

  14. G. Degrassi and P. Slavich, On the NLO QCD corrections to Higgs production and decay in the MSSM, Nucl. Phys. B 805 (2008) 267 [arXiv:0806.1495] [INSPIRE].

    Article  ADS  Google Scholar 

  15. L. Mihaila and C. Reisser, \(O\left( {\alpha_{^{\text{s}}}^2} \right)\) corrections to fermionic Higgs decays in the MSSM, JHEP 08 (2010) 021 [arXiv:1007.0693] [INSPIRE].

    Article  ADS  Google Scholar 

  16. R.V. Harlander and M. Steinhauser, Supersymmetric Higgs production in gluon fusion at next-to-leading order, JHEP 09 (2004) 066 [hep-ph/0409010] [INSPIRE].

    Article  ADS  Google Scholar 

  17. A. Pak, M. Steinhauser and N. Zerf, Towards Higgs boson production in gluon fusion to NNLO in the MSSM, Eur. Phys. J. C 71 (2011) 1602 [arXiv:1012.0639] [INSPIRE].

    ADS  Google Scholar 

  18. A. Pak, M. Steinhauser and N. Zerf, Supersymmetric next-to-next-to-leading order corrections to Higgs boson production in gluon fusion, in preparation.

  19. R.V. Harlander, L. Mihaila and M. Steinhauser, The SUSY-QCD β-function to three loops, Eur. Phys. J. C 63 (2009) 383 [arXiv:0905.4807] [INSPIRE].

    Article  ADS  Google Scholar 

  20. A. Bednyakov, Running mass of the b-quark in QCD and SUSY QCD, Int. J. Mod. Phys. A 22 (2007) 5245 [arXiv:0707.0650] [INSPIRE].

    ADS  Google Scholar 

  21. T. Hermann, L. Mihaila and M. Steinhauser, Three-loop anomalous dimensions for squarks in supersymmetric QCD, Phys. Lett. B 703 (2011) 51 [arXiv:1106.1060] [INSPIRE].

    ADS  Google Scholar 

  22. P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. J. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].

  24. V.A. Smirnov, Applied Asymptotic Expansions in Momenta and Masses, Springer Tracts in Modern Physics 177 (2002).

  25. R. Harlander, T. Seidensticker and M. Steinhauser, Complete corrections of Order αα s to the decay of the Z boson into bottom quarks, Phys. Lett. B 426 (1998) 125 [hep-ph/9712228] [INSPIRE].

    ADS  Google Scholar 

  26. T. Seidensticker, Automatic application of successive asymptotic expansions of Feynman diagrams, hep-ph/9905298 [INSPIRE].

  27. M. Steinhauser, MATAD: A Program package for the computation of MAssive TADpoles, Comput. Phys. Commun. 134 (2001) 335 [hep-ph/0009029] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  28. http://www-ttp.particle.uni-karlsruhe.de/Progdata/ttp12/ttp12-22/.

  29. S.P. Martin, A Supersymmetry primer, hep-ph/9709356 [INSPIRE].

  30. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  31. B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  32. J. Vermaseren, S. Larin and T. van Ritbergen, The four loop quark mass anomalous dimension and the invariant quark mass, Phys. Lett. B 405 (1997) 327 [hep-ph/9703284] [INSPIRE].

    ADS  Google Scholar 

  33. M. Czakon, The Four-loop QCD β-function and anomalous dimensions, Nucl. Phys. B 710 (2005) 485 [hep-ph/0411261] [INSPIRE].

    Article  ADS  Google Scholar 

  34. I. Jack, D. Jones and C. North, N = 1 supersymmetry and the three loop gauge β-function, Phys. Lett. B 386 (1996) 138 [hep-ph/9606323] [INSPIRE].

    ADS  Google Scholar 

  35. A. Pickering, J. Gracey and D. Jones, Three loop gauge β-function for the most general single gauge coupling theory, Phys. Lett. B 510 (2001) 347 [Erratum ibid. B 535 (2002) 377] [hep-ph/0104247] [INSPIRE].

    ADS  Google Scholar 

  36. I. Jack, D. Jones and C. North, Scheme dependence and the NSVZ β-function, Nucl. Phys. B 486 (1997) 479 [hep-ph/9609325] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Steinhauser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurz, A., Steinhauser, M. & Zerf, N. Decoupling constant for α s and the effective gluon-Higgs coupling to three loops in supersymmetric QCD. J. High Energ. Phys. 2012, 138 (2012). https://doi.org/10.1007/JHEP07(2012)138

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)138

Keywords

Navigation