Skip to main content
Log in

Invisible Higgs and dark matter

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate the possibility that a massive weakly interacting fermion simultaneously provides for a dominant component of the dark matter relic density and an invisible decay width of the Higgs boson at the LHC. As a concrete model realizing such dynamics we consider the minimal walking technicolor, although our results apply more generally. Taking into account the constraints from the electroweak precision measurements and current direct searches for dark matter particles, we find that such scenario is heavily constrained, and large portions of the parameter space are excluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, G. Aad et al., Search for the Higgs boson in the HW Wlνjj decay channel in pp collisions at \( \sqrt {s} = 7 \) TeV with the ATLAS detector, Phys. Rev. Lett. 107 (2011) 231801 [arXiv:1109.3615] [INSPIRE].

    Article  ADS  Google Scholar 

  2. CMS collaboration, Search for the Higgs boson in the fully leptonic W + W final state, CMS-PAS-EXO-11-024 (2011).

  3. ATLAS collaboration, G. Aad et al., Search for the standard model Higgs boson in the decay channel H to ZZ → 4l with 4.8 fb −1 of pp collision data at \( \sqrt {s} = 7 \) TeV with ATLAS, Phys. Lett. B 710 (2012) 383 [arXiv:1202.1415] [INSPIRE].

    ADS  Google Scholar 

  4. CMS collaboration, Updated search for new physics in highly boosted Z 0 decays to dimuon in pp collisions at \( \sqrt {s} = 7 \) TeV, CMS-PAS-EXO-11-025 (2011).

  5. C. Englert, T. Plehn, M. Rauch, D. Zerwas and P.M. Zerwas, LHC: standard Higgs and hidden Higgs, Phys. Lett. B 707 (2012) 512 [arXiv:1112.3007] [INSPIRE].

    ADS  Google Scholar 

  6. M. Raidal and A. Strumia, Hints for a non-standard Higgs boson from the LHC, Phys. Rev. D 84 (2011) 077701 [arXiv:1108.4903] [INSPIRE].

    ADS  Google Scholar 

  7. Y. Mambrini, Higgs searches and singlet scalar dark matter: combined constraints from XENON100 and the LHC, Phys. Rev. D 84 (2011) 115017 [arXiv:1108.0671] [INSPIRE].

    ADS  Google Scholar 

  8. X.-G. He and J. Tandean, Hidden Higgs boson at the LHC and light dark matter searches, Phys. Rev. D 84 (2011) 075018 [arXiv:1109.1277] [INSPIRE].

    ADS  Google Scholar 

  9. I. Low, P. Schwaller, G. Shaughnessy and C.E. Wagner, The dark side of the Higgs boson, Phys. Rev. D 85 (2012) 015009 [arXiv:1110.4405] [INSPIRE].

    ADS  Google Scholar 

  10. S. Kanemura, S. Matsumoto, T. Nabeshima and N. Okada, Can WIMP dark matter overcome the nightmare scenario?, Phys. Rev. D 82 (2010) 055026 [arXiv:1005.5651] [INSPIRE].

    ADS  Google Scholar 

  11. O. Lebedev, H.M. Lee and Y. Mambrini, Vector Higgs-portal dark matter and the invisible Higgs, Phys. Lett. B 707 (2012) 570 [arXiv:1111.4482] [INSPIRE].

    ADS  Google Scholar 

  12. A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].

    ADS  Google Scholar 

  13. T. Hambye, Hidden vector dark matter, JHEP 01 (2009) 028 [a rXiv:0811.0172] [INSPIRE].

    Article  ADS  Google Scholar 

  14. J. Hisano, K. Ishiwata, N. Nagata and M. Yamanaka, Direct detection of vector dark matter, Prog. Theor. Phys. 126 (2011) 435 [arXiv:1012.5455] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  15. S.-W. Baek, P. Ko and W.-I. Park, Search for the Higgs portal to a singlet fermionic dark matter at the LHC, JHEP 02 (2012) 047 [arXiv:1112.1847] [INSPIRE].

    Article  ADS  Google Scholar 

  16. L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter and a Standard Model like Higgs at 125 GeV, arXiv:1203.2064 [INSPIRE].

  17. F. Sannino and K. Tuominen, Orientifold theory dynamics and symmetry breaking, Phys. Rev. D 71 (2005) 051901 [hep-ph/0405209] [INSPIRE].

    ADS  Google Scholar 

  18. R.E. Shrock and M. Suzuki, Invisible decays of Higgs bosons, Phys. Lett. B 110 (1982) 250 [INSPIRE].

    ADS  Google Scholar 

  19. K. Belotsky, D. Fargion, M. Khlopov, R. Konoplich and K. Shibaev, Invisible Higgs boson decay into massive neutrinos of fourth generation, Phys. Rev. D 68 (2003) 054027 [hep-ph/0210153] [INSPIRE].

    ADS  Google Scholar 

  20. W.-Y. Keung and P. Schwaller, Long lived fourth generation and the Higgs, JHEP 06 (2011) 054 [arXiv:1103.3765] [INSPIRE].

    Article  ADS  Google Scholar 

  21. A. Djouadi and A. Lenz, Sealing the fate of a fourth generation of fermions, arXiv:1204.1252 [INSPIRE].

  22. K. Kainulainen, J. Virkajarvi and K. Tuominen, Superweakly interacting dark matter from the minimal walking technicolor, JCAP 02 (2010) 029 [arXiv:0912.2295] [INSPIRE].

    Article  ADS  Google Scholar 

  23. E. Witten, An SU(2) anomaly, Phys. Lett. B 117 (1982) 324 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. D.D. Dietrich, F. Sannino and K. Tuominen, Light composite Higgs from higher representations versus electroweak precision measurements: Predictions for CERN LHC, Phys. Rev. D 72 (2005) 055001 [hep-ph/0505059] [INSPIRE].

    ADS  Google Scholar 

  25. S. Davidson, B. Campbell and D.C. Bailey, Limits on particles of small electric charge, Phys. Rev. D 43 (1991) 2314 [INSPIRE].

    ADS  Google Scholar 

  26. S. Davidson, S. Hannestad and G. Raffelt, Updated bounds on millicharged particles, JHEP 05 (2000) 003 [hep-ph/0001179] [INSPIRE].

    Article  ADS  Google Scholar 

  27. S. Dubovsky, D. Gorbunov and G. Rubtsov, Narrowing the window for millicharged particles by CMB anisotropy, JETP Lett. 79 (2004) 1 [hep-ph/0311189] [INSPIRE].

    Article  ADS  Google Scholar 

  28. L. Chuzhoy and E.W. Kolb, Reopening the window on charged dark matter, JCAP 07 (2009) 014 [arXiv:0809.0436] [INSPIRE].

    Article  ADS  Google Scholar 

  29. D.K. Hong, S.D. Hsu and F. Sannino, Composite Higgs from higher representations, Phys. Lett. B 597 (2004) 89 [hep-ph/0406200] [INSPIRE].

    ADS  Google Scholar 

  30. D.D. Dietrich, F. Sannino and K. Tuominen, Light composite Higgs and precision electroweak measurements on the Z resonance: an update, Phys. Rev. D 73 (2006) 037701 [hep-ph/0510217] [INSPIRE].

    ADS  Google Scholar 

  31. T. Hapola, F. Mescia, M. Nardecchia and F. Sannino, Pseudo goldstone bosons phenomenology in minimal walking technicolor, arXiv:1202.3024 [INSPIRE].

  32. C. Kouvaris, Dark Majorana particles from the minimal walking technicolor, Phys. Rev. D 76 (2007) 015011 [hep-ph/0703266] [INSPIRE].

    ADS  Google Scholar 

  33. T. Hur and P. Ko, Scale invariant extension of the standard model with strongly interacting hidden sector, Phys. Rev. Lett. 106 (2011) 141802 [arXiv:1103.2571] [INSPIRE].

    Article  ADS  Google Scholar 

  34. T. Hur, D.-W. Jung, P. Ko and J.Y. Lee, Electroweak symmetry breaking and cold dark matter from strongly interacting hidden sector, Phys. Lett. B 696 (2011) 262 [arXiv:0709.1218] [INSPIRE].

    ADS  Google Scholar 

  35. O. Antipin, M. Heikinheimo and K. Tuominen, The next generation, JHEP 07 (2010) 052 [arXiv:1002.1872] [INSPIRE].

    Article  ADS  Google Scholar 

  36. A. Knochel and C. Wetterich, Theoretical constraints on new generations with and without quarks or neutrinos, Phys. Lett. B 706 (2012) 320 [arXiv:1106.2609] [INSPIRE].

    ADS  Google Scholar 

  37. C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [Erratum ibid. 390 (2004) 553-554] [hep-ph/0203079] [INSPIRE].

    Article  ADS  Google Scholar 

  38. T. Appelquist and R. Shrock, Neutrino masses in theories with dynamical electroweak symmetry breaking, Phys. Lett. B 548 (2002) 204 [hep-ph/0204141] [INSPIRE].

    ADS  Google Scholar 

  39. T. Appelquist, N.D. Christensen, M. Piai and R. Shrock, Flavor-changing processes in extended technicolor, Phys. Rev. D 70 (2004) 093010 [hep-ph/0409035] [INSPIRE].

    ADS  Google Scholar 

  40. R. Foadi, M.T. Frandsen, T.A. Ryttov and F. Sannino, Minimal walking technicolor: set up for collider physics, Phys. Rev. D 76 (2007) 055005 [arXiv:0706.1696] [INSPIRE].

    ADS  Google Scholar 

  41. R. Foadi and F. Sannino, WW scattering in walking technicolor: no discovery scenarios at the CERN LHC and ILC, Phys. Rev. D 78 (2008) 037701 [arXiv:0801.0663] [INSPIRE].

    ADS  Google Scholar 

  42. R. Foadi, M. Jarvinen and F. Sannino, Unitarity in technicolor, Phys. Rev. D 79 (2009) 035010 [arXiv:0811.3719] [INSPIRE].

    ADS  Google Scholar 

  43. M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].

    Article  ADS  Google Scholar 

  44. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  45. O. Antipin, M. Heikinheimo and K. Tuominen, Natural fourth generation of leptons, JHEP 10 (2009) 018 [arXiv:0905.0622] [INSPIRE].

    Article  ADS  Google Scholar 

  46. ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group collaboration, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].

    ADS  Google Scholar 

  47. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  48. B.W. Lee and S. Weinberg, Cosmological lower bound on heavy neutrino masses, Phys. Rev. Lett. 39 (1977) 165 [INSPIRE].

    Article  ADS  Google Scholar 

  49. K. Enqvist, K. Kainulainen and J. Maalampi, Singlet neutrinos in cosmology, Nucl. Phys. B 316 (1989) 456 [INSPIRE].

    Article  ADS  Google Scholar 

  50. P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].

    Article  ADS  Google Scholar 

  51. Cosmological parameters from combined WMAP7+H0 data, reported by NASA in LAMBDA archive: http://lambda.gsfc.nasa.gov/product/map/current/parameters.cfm.

  52. XENON collaboration, J. Angle et al., First results from the XENON10 dark matter experiment at the Gran Sasso National Laboratory, Phys. Rev. Lett. 100 (2008) 021303 [arXiv:0706.0039] [INSPIRE].

    Article  ADS  Google Scholar 

  53. J. Angleet al., Limits on spin-dependent WIMP-nucleon cross-sections from the XENON10 experiment, Phys. Rev. Lett. 101 (2008) 091301 [arXiv:0805.2939] [INSPIRE].

    Article  ADS  Google Scholar 

  54. CDMS collaboration, Z. Ahmed et al., Search for weakly interacting massive particles with the first five-tower data from the cryogenic dark matter search at the Soudan Underground Laboratory, Phys. Rev. Lett. 102 (2009) 011301 [arXiv:0802.3530] [INSPIRE].

    Article  ADS  Google Scholar 

  55. K. Belotsky, M. Khlopov and C. Kouvaris, Muon flux limits for Majorana dark matter from strong coupling theories, Phys. Rev. D 79 (2009) 083520 [arXiv:0810.2022] [INSPIRE].

    ADS  Google Scholar 

  56. Super-Kamiokande collaboration, S. Desai et al., Search for dark matter WIMPs using upward through-going muons in Super-Kamiokande, Phys. Rev. D 70 (2004) 083523 [Erratum ibid. D 70 (2004) 109901] [hep-ex/0404025] [INSPIRE].

    ADS  Google Scholar 

  57. IceCube collaboration, R. Abbasi et al., Limits on a muon flux from neutralino annihilations in the Sun with the IceCube 22-string detector, Phys. Rev. Lett. 102 (2009) 201302 [arXiv:0902.2460] [INSPIRE].

    Article  ADS  Google Scholar 

  58. IceCube collaboration, R. Abbasi et al., Multi-year search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors, Phys. Rev. D 85 (2012) 042002 [arXiv:1112.1840] [INSPIRE].

    ADS  Google Scholar 

  59. Super-Kamiokande collaboration, T. Tanaka et al., An indirect search for WIMPs in the Sun using 3109.6 days of upward-going muons in Super-Kamiokande, Astrophys. J. 742 (2011) 78 [arXiv:1108.3384] [INSPIRE].

    Article  ADS  Google Scholar 

  60. M. Järvinen, C. Kouvaris, P. Panci and J. Virkajärvi, in progress.

  61. XENON100 collaboration, E. Aprile et al., Dark matter results from 100 live days of XENON100 data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].

    Article  ADS  Google Scholar 

  62. J.R. Ellis, K.A. Olive and C. Savage, Hadronic uncertainties in the elastic scattering of supersymmetric dark matter, Phys. Rev. D 77 (2008) 065026 [arXiv:0801.3656] [INSPIRE].

    ADS  Google Scholar 

  63. J. Alarcon, J. Martin Camalich and J. Oller, The chiral representation of the πN scattering amplitude and the pion-nucleon sigma term, Phys. Rev. D 85 (2012) 051503 [arXiv:1110.3797] [INSPIRE].

    ADS  Google Scholar 

  64. QCDSF collaboration, G. Bali et al., A lattice study of the strangeness content of the nucleon, Prog. Part. Nucl. Phys. 67 (2012) 467 [arXiv:1112.0024] [INSPIRE].

    Article  ADS  Google Scholar 

  65. H.-Y. Cheng and C.-W. Chiang, Revisiting scalar and pseudoscalar couplings with nucleons, arXiv:1202.1292 [INSPIRE].

  66. R.Gaitskell, V. Mandic and J. Filippini, SUSY dark matter/interactive direct detection limit plotter, http://dmtools.berkeley.edu/limitplots/.

  67. C. Englert, J. Jaeckel, E. Re and M. Spannowsky, Evasive Higgs maneuvers at the LHC, Phys. Rev. D 85 (2012) 035008 [arXiv:1111.1719] [INSPIRE].

    ADS  Google Scholar 

  68. M.T. Frandsen, I. Masina and F. Sannino, Fourth lepton family is natural in technicolor, Phys. Rev. D 81 (2010) 035010 [arXiv:0905.1331] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matti Heikinheimo.

Additional information

ArXiv ePrint: 1203.5766

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heikinheimo, M., Tuominen, K. & Virkajärvi, J. Invisible Higgs and dark matter. J. High Energ. Phys. 2012, 117 (2012). https://doi.org/10.1007/JHEP07(2012)117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)117

Keywords

Navigation