Skip to main content
Log in

Extremal surfaces as bulk probes in AdS/CFT

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Motivated by the need for further insight into the emergence of AdS bulk spacetime from CFT degrees of freedom, we explore the behaviour of probes represented by specific geometric quantities in the bulk. We focus on geodesics and n-dimensional extremal surfaces in a general static asymptotically AdS spacetime with spherical and planar symmetry, respectively. While our arguments do not rely on the details of the metric, we illustrate some of our findings explicitly in spacetimes of particular interest (specifically AdS, Schwarzschild-AdS and extreme Reissner-Nordstrom-AdS). In case of geodesics, we find that for a fixed spatial distance between the geodesic endpoints, spacelike geodesics at constant time can reach deepest into the bulk. We also present a simple argument for why, in the presence of a black hole, geodesics cannot probe past the horizon whilst anchored on the AdS boundary at both ends. The reach of an extremal n-dimensional surface anchored on a given region depends on its dimensionality, the shape and size of the bounding region, as well as the bulk metric. We argue that for a fixed extent or volume of the boundary region, spherical regions give rise to the deepest reach of the corresponding extremal surface. Moreover, for physically sensible spacetimes, at fixed extent of the boundary region, higher-dimensional surfaces reach deeper into the bulk. Finally, we show that in a static black hole spacetime, no extremal surface (of any dimensionality, anchored on any region in the boundary) can ever penetrate the horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  2. T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [INSPIRE].

  3. J. Polchinski, S matrices from AdS space-time, hep-th/9901076 [INSPIRE].

  4. L. Susskind, Holography in the flat space limit, hep-th/9901079 [INSPIRE].

  5. S.B. Giddings, Flat space scattering and bulk locality in the AdS/CFT correspondence, Phys. Rev. D 61 (2000) 106008 [hep-th/9907129] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. G.T. Horowitz and V.E. Hubeny, CFT description of small objects in AdS, JHEP 10 (2000) 027 [hep-th/0009051] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: A Boundary view of horizons and locality, Phys. Rev. D 73 (2006) 086003 [hep-th/0506118] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. M. Gary and S.B. Giddings, The Flat space S-matrix from the AdS/CFT correspondence?, Phys. Rev. D 80 (2009) 046008 [arXiv:0904.3544] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. D. Kabat, G. Lifschytz and D.A. Lowe, Constructing local bulk observables in interacting AdS/CFT, Phys. Rev. D 83 (2011) 106009 [arXiv:1102.2910] [INSPIRE].

    ADS  Google Scholar 

  11. A.L. Fitzpatrick and J. Kaplan, Scattering States in AdS/CFT, arXiv:1104.2597 [INSPIRE].

  12. I. Heemskerk, D. Marolf and J. Polchinski, Bulk and Transhorizon Measurements in AdS/CFT, arXiv:1201.3664 [INSPIRE].

  13. V.E. Hubeny and M. Rangamani, A Holographic view on physics out of equilibrium, Adv. High Energy Phys. 2010 (2010) 297916 [arXiv:1006.3675] [INSPIRE].

    Google Scholar 

  14. L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker, The Black hole singularity in AdS/CFT, JHEP 02 (2004) 014 [hep-th/0306170] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. G. Festuccia and H. Liu, Excursions beyond the horizon: Black hole singularities in Yang-Mills theories. I., JHEP 04 (2006) 044 [hep-th/0506202] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev. D 61 (2000) 044007 [hep-th/9906226] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. J. Louko, D. Marolf and S.F. Ross, On geodesic propagators and black hole holography, Phys. Rev. D 62 (2000) 044041 [hep-th/0002111] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. P. Kraus, H. Ooguri and S. Shenker, Inside the horizon with AdS/CFT, Phys. Rev. D 67 (2003) 124022 [hep-th/0212277] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. V. Balasubramanian et al., Typicality versus thermality: An Analytic distinction, Gen. Rel. Grav. 40 (2008) 1863 [hep-th/0701122] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  20. S.D. Mathur, The Fuzzball proposal for black holes: An Elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept. 467 (2008) 117 [arXiv:0804.0552] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. B. Freivogel, V.E. Hubeny, A. Maloney, R.C. Myers, M. Rangamani and S. Shenker, Inflation in AdS/CFT, JHEP 03 (2006) 007 [hep-th/0510046] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. V.E. Hubeny, H. Liu and M. Rangamani, Bulk-cone singularities & signatures of horizon formation in AdS/CFT, JHEP 01 (2007) 009 [hep-th/0610041] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. S. Gao and R.M. Wald, Theorems on gravitational time delay and related issues, Class. Quant. Grav. 17 (2000) 4999 [gr-qc/0007021] [INSPIRE].

  25. J. Erdmenger, C. Hoyos and S. Lin, Time Singularities of Correlators from Dirichlet Conditions in AdS/CFT, JHEP 03 (2012) 085 [arXiv:1112.1963] [INSPIRE].

    Article  ADS  Google Scholar 

  26. I. Amado and C. Hoyos-Badajoz, AdS black holes as reflecting cavities, JHEP 09 (2008) 118 [arXiv:0807.2337] [INSPIRE].

    Article  ADS  Google Scholar 

  27. J. Erdmenger, S. Lin and T.H. Ngo, A Moving mirror in AdS space as a toy model for holographic thermalization, JHEP 04 (2011) 035 [arXiv:1101.5505] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J. Hammersley, Extracting the bulk metric from boundary information in asymptotically AdS spacetimes, JHEP 12 (2006) 047 [hep-th/0609202] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. S. Bilson, Extracting spacetimes using the AdS/CFT conjecture, JHEP 08 (2008) 073 [arXiv:0807.3695] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. T. Nishioka, S. Ryu and T. Takayanagi, Holographic Entanglement Entropy: An Overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].

    MathSciNet  Google Scholar 

  33. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. R. Bousso, A Covariant entropy conjecture, JHEP 07 (1999) 004 [hep-th/9905177] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic Evolution of Entanglement Entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].

    Article  ADS  Google Scholar 

  39. J. Aparicio and E. Lopez, Evolution of Two-Point Functions from Holography, JHEP 12 (2011) 082 [arXiv:1109.3571] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. T. Albash and C.V. Johnson, Evolution of Holographic Entanglement Entropy after Thermal and Electromagnetic Quenches, New J. Phys. 13 (2011) 045017 [arXiv:1008.3027] [INSPIRE].

    Article  ADS  Google Scholar 

  41. V. Balasubramanian et al., Thermalization of Strongly Coupled Field Theories, Phys. Rev. Lett. 106 (2011) 191601 [arXiv:1012.4753] [INSPIRE].

    Article  ADS  Google Scholar 

  42. V. Balasubramanian et al., Holographic Thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].

    ADS  Google Scholar 

  43. T. Albash and C.V. Johnson, Holographic Entanglement Entropy and Renormalization Group Flow, JHEP 02 (2012) 095 [arXiv:1110.1074] [INSPIRE].

    Article  ADS  Google Scholar 

  44. T. Albash and C.V. Johnson, Holographic Studies of Entanglement Entropy in Superconductors, JHEP 05 (2012) 079 [arXiv:1202.2605] [INSPIRE].

    Article  ADS  Google Scholar 

  45. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  46. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].

    Article  ADS  Google Scholar 

  47. V.E. Hubeny, Precursors see inside black holes, Int. J. Mod. Phys. D 12 (2003) 1693 [hep-th/0208047] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  48. R.C. Myers and A. Singh, Comments on Holographic Entanglement Entropy and RG Flows, JHEP 04 (2012) 122 [arXiv:1202.2068] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. H. Liu and M. Mezei, A Refinement of entanglement entropy and the number of degrees of freedom, arXiv:1202.2070 [INSPIRE].

  50. V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. V. Keranen, E. Keski-Vakkuri and L. Thorlacius, Thermalization and entanglement following a non-relativistic holographic quench, Phys. Rev. D 85 (2012) 026005 [arXiv:1110.5035] [INSPIRE].

    ADS  Google Scholar 

  52. I. Booth, Black hole boundaries, Can. J. Phys. 83 (2005) 1073 [gr-qc/0508107] [INSPIRE].

    Article  ADS  Google Scholar 

  53. P. Figueras, V.E. Hubeny, M. Rangamani and S.F. Ross, Dynamical black holes and expanding plasmas, JHEP 04 (2009) 137 [arXiv:0902.4696] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronika E. Hubeny.

Additional information

ArXiv ePrint: 1203.1044

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hubeny, V.E. Extremal surfaces as bulk probes in AdS/CFT. J. High Energ. Phys. 2012, 93 (2012). https://doi.org/10.1007/JHEP07(2012)093

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)093

Keywords

Navigation