Skip to main content
Log in

Higher spin fermions in the BTZ black hole

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Recently it has been shown that the wave equations of bosonic higher spin fields in the BTZ background can be solved exactly. In this work we extend this analysis to fermionic higher spin fields. We solve the wave equations for arbitrary half-integer spin fields in the BTZ black hole background and obtain exact expressions for their quasinormal modes. These quasinormal modes are shown to agree precisely with the poles of the corresponding two point function in the dual conformal field theory as predicted by the AdS/CFT correspondence. We also obtain an expression for the 1-loop determinant for the Euclidean non-rotating BTZ black hole in terms of the quasinormal modes which agrees with that obtained by integrating the heat kernel found by group theoretic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Datta and J.R. David, Higher Spin Quasinormal Modes and One-Loop Determinants in the BTZ black Hole, JHEP 03 (2012) 079 [arXiv:1112.4619] [INSPIRE].

    ADS  Google Scholar 

  2. J.R. David and A. Sadhukhan, Classical integrability in the BTZ black hole, JHEP 08 (2011) 079 [arXiv:1105.0480] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. M. Natsuume and Y. Satoh, String theory on three-dimensional black holes, Int. J. Mod. Phys. A 13 (1998) 1229 [hep-th/9611041] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. M.R. Gaberdiel and R. Gopakumar, An AdS 3 dual for minimal model CFTs, Phys. Rev. D 83 (2011)066007 [arXiv:1011.2986] [INSPIRE].

    ADS  Google Scholar 

  6. T. Creutzig, Y. Hikida and P.B. Ronne, Higher spin AdS 3 supergravity and its dual CFT, JHEP 02 (2012) 109 [arXiv:1111.2139] [INSPIRE].

    Article  ADS  Google Scholar 

  7. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. D. Birmingham, I. Sachs and S.N. Solodukhin, Conformal field theory interpretation of black hole quasinormal modes, Phys. Rev. Lett. 88 (2002) 151301 [hep-th/0112055] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [INSPIRE].

    ADS  Google Scholar 

  11. S.S. Gubser, Absorption of photons and fermions by black holes in four-dimensions, Phys. Rev. D 56 (1997) 7854 [hep-th/9706100] [INSPIRE].

    ADS  Google Scholar 

  12. F. Denef, S.A. Hartnoll and S. Sachdev, Black hole determinants and quasinormal modes, Class. Quant. Grav. 27 (2010) 125001 [arXiv:0908.2657] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. J.R. David, M.R. Gaberdiel and R. Gopakumar, The Heat Kernel on AdS 3 and its Applications, JHEP 04 (2010) 125 [arXiv:0911.5085] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. S. Das and A. Dasgupta, Black hole emission rates and the AdS/CFT correspondence, JHEP 10 (1999) 025 [hep-th/9907116] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. I. Buchbinder, V. Krykhtin and A. Reshetnyak, BRST approach to Lagrangian construction for fermionic higher spin fields in (A)dS space, Nucl. Phys. B 787 (2007) 211 [hep-th/0703049] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. R. Metsaev, Massive totally symmetric fields in AdS(d), Phys. Lett. B 590 (2004) 95 [hep-th/0312297] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. R. Metsaev, Gauge invariant formulation of massive totally symmetric fermionic fields in (A)dS space, Phys. Lett. B 643 (2006) 205 [hep-th/0609029] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. I. Tyutin and M.A. Vasiliev, Lagrangian formulation of irreducible massive fields of arbitrary spin in (2 + 1)-dimensions, Teor. Mat. Fiz. 113 N1 (1997) 45 [hep-th/9704132] [INSPIRE].

  19. M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [INSPIRE].

    ADS  Google Scholar 

  20. A. Dasgupta, Emission of fermions from BTZ black holes, Phys. Lett. B 445 (1999) 279 [hep-th/9808086] [INSPIRE].

    ADS  Google Scholar 

  21. N. Iqbal and H. Liu, Real-time response in AdS/CFT with application to spinors, Fortsch. Phys. 57 (2009) 367 [arXiv:0903.2596] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. J.P. Gauntlett, J. Sonner and D. Waldram, Spectral function of the supersymmetry current, JHEP 11 (2011) 153 [arXiv:1108.1205] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouvik Datta.

Additional information

ArXiv ePrint: 1202.5831

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datta, S., David, J.R. Higher spin fermions in the BTZ black hole. J. High Energ. Phys. 2012, 79 (2012). https://doi.org/10.1007/JHEP07(2012)079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)079

Keywords

Navigation