Skip to main content
Log in

New sum rules from low energy Compton scattering on arbitrary spin target

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We derive two sum rules by studying the low energy Compton scattering on a target of arbitrary (nonzero) spin j. In the first sum rule, we consider the possibility that the intermediate state in the scattering can have spin |j±1| and the same mass as the target. The second sum rule applies if the theory at hand possesses intermediate narrow resonances with masses different from the mass of the scatterer. These sum rules are generalizations of the Gerasimov-Drell-Hearn-Weinberg sum rule. Along with the requirement of tree level unitarity, they relate different low energy couplings in the theory. Using these sum rules, we show that in certain cases the gyromagnetic ratio can differ from the “natural” value g = 2, even at tree level, without spoiling perturbative unitarity. These sum rules can be used as constraints applicable to all supergravity and higher-spin theories that contain particles charged under some U(1) gauge field. In particular, applied to four dimensional N = 8 supergravity in a spontaneously broken phase, these sum rules suggest that for the theory to have a good ultraviolet behavior, additional massive states need to be present, such as those coming from the embedding of the N = 8 supergravity in type II superstring theory. We also discuss the possible implications of the sum rules for QCD in the large-N c limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. S. Ferrara, M. Porrati and V.L. Telegdi, g = 2 as the natural value of the tree level gyromagnetic ratio of elementary particles, Phys. Rev. D 46 (1992) 3529 [INSPIRE].

    ADS  Google Scholar 

  3. S. Weinberg, Lectures on Elementary Particles and Quantum Field Theory, Volume 1, Brandeis University Summer Institute 1970, S. Deser, M. Grisaru and H. Pendleton (eds.), M.I.T. Press, Cambridge (1970).

  4. S. Gerasimov, A sum rule for magnetic moments and the damping of the nucleon magnetic moment in nuclei, Sov. J. Nucl. Phys. 2 (1966) 430 [INSPIRE].

    Google Scholar 

  5. S. Drell and A.C. Hearn, Exact Sum Rule for Nucleon Magnetic Moments, Phys. Rev. Lett. 16 (1966) 908 [INSPIRE].

    Article  ADS  Google Scholar 

  6. D.Z. Freedman and A.K. Das, Gauge Internal Symmetry in Extended Supergravity, Nucl. Phys. B 120 (1977) 221 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. S. Deser, V. Pascalutsa and A. Waldron, Massive spin 3/2 electrodynamics, Phys. Rev. D 62 (2000) 105031 [hep-th/0003011] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. E. Cremmer, J. Scherk and J.H. Schwarz, Spontaneously Broken N = 8 Supergravity, Phys. Lett. B 84 (1979) 83 [INSPIRE].

    ADS  Google Scholar 

  9. J. Scherk and J.H. Schwarz, Spontaneous Breaking of Supersymmetry Through Dimensional Reduction, Phys. Lett. B 82 (1979) 60 [INSPIRE].

    ADS  Google Scholar 

  10. J. Scherk and J.H. Schwarz, How to Get Masses from Extra Dimensions, Nucl. Phys. B 153 (1979) 61 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. E. Sezgin and P. van Nieuwenhuizen, Renormalizability properties of spontaneously broken N = 8 supergravity, Nucl. Phys. B 195 (1982) 325 [INSPIRE].

    Article  ADS  Google Scholar 

  12. A. Hosoya, K. Ishikawa, Y. Ohkuwa and K. Yamagishi, Gyromagnetic ratio of heavy particles in the Kaluza-Klein theory, Phys. Lett. B 134 (1984) 44 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. C.K. Zachos, N = 2 supergravity theory with a gauged central charge, Phys. Lett. B 76 (1978) 329 [INSPIRE].

    ADS  Google Scholar 

  14. M. Duff, J.T. Liu and J. Rahmfeld, Dipole moments of black holes and string states, Nucl. Phys. B 494 (1997) 161 [hep-th/9612015] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. M. Duff, J.T. Liu and J. Rahmfeld, g = 1 for Dirichlet 0-branes, Nucl. Phys. B 524 (1998) 129 [hep-th/9801072] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. L. Andrianopoli, R. D’Auria, S. Ferrara and M. Lledó, Gauging of flat groups in four-dimensional supergravity, JHEP 07 (2002) 010 [hep-th/0203206] [INSPIRE].

    Article  ADS  Google Scholar 

  17. R. Rohm, Spontaneous Supersymmetry Breaking in Supersymmetric String Theories, Nucl. Phys. B 237 (1984) 553 [INSPIRE].

    Article  ADS  Google Scholar 

  18. C. Kounnas and M. Porrati, Spontaneous Supersymmetry Breaking in String Theory, Nucl. Phys. B 310 (1988) 355 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. S.B. Giddings and R.A. Porto, The Gravitational S-matrix, Phys. Rev. D 81 (2010) 025002 [arXiv:0908.0004] [INSPIRE].

    ADS  Google Scholar 

  20. S.B. Giddings, The gravitational S-matrix: Erice lectures, arXiv:1105.2036 [INSPIRE].

  21. T. Banks, Arguments Against a Finite N = 8 Supergravity, arXiv:1205.5768 [INSPIRE].

  22. Z. Bern, J. Carrasco and H. Johansson, Progress on Ultraviolet Finiteness of Supergravity, arXiv:0902.3765 [INSPIRE].

  23. M. Porrati, Universal Limits on Massless High-Spin Particles, Phys. Rev. D 78 (2008) 065016 [arXiv:0804.4672] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. F. Low, Scattering of light of very low frequency by systems of spin 1/2, Phys. Rev. 96 (1954) 1428 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. M. Gell-Mann and M. Goldberger, Scattering of low-energy photons by particles of spin 1/2, Phys. Rev. 96 (1954) 1433 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. S. Ferrara and M. Porrati, Supersymmetric sum rules on magnetic dipole moments of arbitrary spin particles, Phys. Lett. B 288 (1992) 85 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. H. Jones and M. Scadron, Multipole gamma N Delta form-factors and resonant photoproduction and electroproduction, Annals Phys. 81 (1973) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  28. V. Pascalutsa and D.R. Phillips, Effective theory of the delta(1232) in Compton scattering off the nucleon, Phys. Rev. C 67 (2003) 055202 [nucl-th/0212024] [INSPIRE].

    ADS  Google Scholar 

  29. V. Pascalutsa and D.R. Phillips, Model independent effects of Delta excitation in nucleon spin polarizabilities, Phys. Rev. C 68 (2003) 055205 [nucl-th/0305043] [INSPIRE].

    ADS  Google Scholar 

  30. E. Witten, Baryons in the 1/n Expansion, Nucl. Phys. B 160 (1979) 57 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. G.S. Adkins, C.R. Nappi and E. Witten, Static Properties of Nucleons in the Skyrme Model, Nucl. Phys. B 228 (1983) 552 [INSPIRE].

    Article  ADS  Google Scholar 

  32. H.R. Grigoryan, T.-S. Lee and H.-U. Yee, Electromagnetic Nucleon-to-Delta Transition in Holographic QCD, Phys. Rev. D 80 (2009) 055006 [arXiv:0904.3710] [INSPIRE].

    ADS  Google Scholar 

  33. L. Tiator, D. Drechsel, O. Hanstein, S. Kamalov and S. Yang, The E2 / M1 and C2/M1 ratios and form-factors in NDelta transitions, Nucl. Phys. A 689 (2001) 205 [nucl-th/0012046] [INSPIRE].

    ADS  Google Scholar 

  34. S.J. Brodsky and J.R. Primack, The Electromagnetic Interactions of Composite Systems, Annals Phys. 52 (1969) 315 [INSPIRE].

    Article  ADS  Google Scholar 

  35. S.J. Brodsky and S. Drell, The Anomalous Magnetic Moment and Limits on Fermion Substructure, Phys. Rev. D 22 (1980) 2236 [INSPIRE].

    ADS  Google Scholar 

  36. R. Devenish, T. Eisenschitz and J. Korner, Electromagnetic N N Transition Form-Factors, Phys. Rev. D 14 (1976) 3063 [INSPIRE].

    ADS  Google Scholar 

  37. P.R. Auvil and J.J. Brehm, Wave Functions for Particles of Higher Spin, Phys. Rev. 145 (1966) 1152.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hovhannes R. Grigoryan.

Additional information

ArXiv ePrint: 1204.1064

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigoryan, H.R., Porrati, M. New sum rules from low energy Compton scattering on arbitrary spin target. J. High Energ. Phys. 2012, 48 (2012). https://doi.org/10.1007/JHEP07(2012)048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)048

Keywords

Navigation