Skip to main content
Log in

Notes on supersymmetric Wilson loops on a two-sphere

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study a recently discovered family of 1/8-BPS supersymmetric Wilson loops in \( \mathcal{N} = 4 \) super Yang-Mills theory and their string theory duals. The operators are defined for arbitrary contours on a two-sphere in space-time, and they were conjectured to be captured perturbatively by 2d bosonic Yang-Mills theory. In the AdS dual, they are described by pseudo-holomorphic string surfaces living on a certain submanifold of AdS 5 × S 5. We show that the regularized area of these string surfaces is invariant under area preserving diffeomorphisms of the boundary loop, in agreement with the conjecture. Further, we find a connection between the pseudo-holomorphicity equations and an auxiliary σ-model on S 3, which may help to construct new 1/8-BPS string solutions. We also show that the conjectured relation to 2d Yang-Mills implies that a connected correlator of two Wilson loops is computed by a Hermitian Gaussian two-matrix model. On the AdS dual side, we argue that the connected correlator is described by two disconnected disks interacting through the exchange of supergravity modes, and we show that this agrees with the strong coupling planar limit of the two-matrix model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  2. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  4. J.A. Minahan and K. Zarembo, The Bethe-ansatz for N = 4 super Yang-Mills, JHEP 03 (2003) 013 [hep-th/0212208] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. N. Beisert, C. Kristjansen and M. Staudacher, The dilatation operator of N = 4 super Yang-Mills theory, Nucl. Phys. B 664 (2003) 131 [hep-th/0303060] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. N. Beisert, The dilatation operator of N = 4 super Yang-Mills theory and integrability, Phys. Rept. 405 (2005) 1 [hep-th/0407277] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. B. Eden and M. Staudacher, Integrability and transcendentality, J. Stat. Mech. (2006) P11014 [hep-th/0603157] [SPIRES].

  8. N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. (2007) P01021 [hep-th/0610251] [SPIRES].

  9. L. Freyhult, A. Rej and M. Staudacher, A generalized scaling function for AdS/CFT, J. Stat. Mech. (2008) P07015 [arXiv:0712.2743] [SPIRES].

  10. J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. N. Drukker and D.J. Gross, An exact prediction of N = 4 SUSY M theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. G.W. Semenoff and K. Zarembo, More exact predictions of SUSYM for string theory, Nucl. Phys. B 616 (2001) 34 [hep-th/0106015] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, arXiv:0712.2824 [SPIRES].

  14. N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, More supersymmetric Wilson loops, Phys. Rev. D 76 (2007) 107703 [arXiv:0704.2237] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Supersymmetric Wilson loops on S 3, JHEP 05 (2008) 017 [arXiv:0711.3226] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Wilson loops: from four-dimensional SYM to two-dimensional YM, Phys. Rev. D 77 (2008) 047901 [arXiv:0707.2699] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. A. Bassetto, S. Nicoli and F. Vian, Topological contributions in two-dimensional Yang-Mills theory: from group averages to integration over algebras, Lett. Math. Phys. 57 (2001) 97 [hep-th/0101052] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Bassetto, L. Griguolo and F. Vian, Instanton contributions to Wilson loops with general winding number in two dimensions and the spectral density, Nucl. Phys. B 559 (1999) 563 [hep-th/9906125] [SPIRES].

    Article  ADS  Google Scholar 

  19. A. Bassetto and L. Griguolo, Two-dimensional QCD, instanton contributions and the perturbative Wu-Mandelstam-Leibbrandt prescription, Phys. Lett. B 443 (1998) 325 [hep-th/9806037] [SPIRES].

    ADS  Google Scholar 

  20. A. Bassetto, L. Griguolo, F. Pucci and D. Seminara, Supersymmetric Wilson loops at two loops, JHEP 06 (2008) 083 [arXiv:0804.3973] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. D. Young, BPS Wilson loops on S 2 at higher loops, JHEP 05 (2008) 077 [arXiv:0804.4098] [SPIRES].

    Article  ADS  Google Scholar 

  22. V. Pestun, Wilson loops in supersymmetric gauge theories, Ph.D. thesis, Princeton University, Princeton U.S.A. (2008).

  23. V. Pestun, Localization of the four-dimensional N = 4 SYM to a two-sphere and 1/8 BPS Wilson loops, arXiv:0906.0638 [SPIRES].

  24. N. Drukker and B. Fiol, All-genus calculation of Wilson loops using D-branes, JHEP 02 (2005) 010 [hep-th/0501109] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. J. Gomis and F. Passerini, Holographic Wilson loops, JHEP 08 (2006) 074 [hep-th/0604007] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. S. Yamaguchi, Wilson loops of anti-symmetric representation and D5-branes, JHEP 05 (2006) 037 [hep-th/0603208] [SPIRES].

    Article  ADS  Google Scholar 

  27. S. Giombi, R. Ricci and D. Trancanelli, Operator product expansion of higher rank Wilson loops from D-branes and matrix models, JHEP 10 (2006) 045 [hep-th/0608077] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, On the D3-brane description of some 1/4 BPS Wilson loops, JHEP 04 (2007) 008 [hep-th/0612168] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. T. Okuda, A prediction for bubbling geometries, JHEP 01 (2008) 003 [arXiv:0708.3393] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. T. Okuda and D. Trancanelli, Spectral curves, emergent geometry and bubbling solutions for Wilson loops, JHEP 09 (2008) 050 [arXiv:0806.4191] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. J. Gomis, S. Matsuura, T. Okuda and D. Trancanelli, Wilson loop correlators at strong coupling: from matrices to bubbling geometries, JHEP 08 (2008) 068 [arXiv:0807.3330] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. K. Pohlmeyer, Integrable hamiltonian systems and interactions through quadratic constraints, Commun. Math. Phys. 46 (1976) 207 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. N. Drukker, 1/4 BPS circular loops, unstable world-sheet instantons and the matrix model, JHEP 09 (2006) 004 [hep-th/0605151] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. A.A. Migdal, Gauge transitions in gauge and spin lattice systems, Sov. Phys. JETP 42 (1975) 743 [Zh. Eksp. Teor. Fiz. 69 (1975) 1457] [SPIRES].

    ADS  Google Scholar 

  37. V.A. Kazakov and I.K. Kostov, Nonlinear strings in two-dimensional u(infinity) gauge theory, Nucl. Phys. B 176 (1980) 199 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. V.A. Kazakov and I.K. Kostov, Computation of the Wilson loop functional in two-dimensional u(infinite) lattice gauge theory, Phys. Lett. B 105 (1981) 453 [SPIRES].

    ADS  Google Scholar 

  39. B.E. Rusakov, Loop averages and partition functions in U(N) gauge theory on two-dimensional manifolds, Mod. Phys. Lett. A 5 (1990) 693 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  40. M. Blau and G. Thompson, Lectures on 2 − D gauge theories: topological aspects and path integral techniques, hep-th/9310144 [SPIRES].

  41. M. Blau and G. Thompson, Quantum Yang-Mills theory on arbitrary surfaces, Int. J. Mod. Phys. A 7 (1992) 3781 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  42. L. Gross, C. King and A. Sengupta, Two-dimensional Yang-Mills theory via stochastic differential equations, Annals Phys. 194 (1989) 65 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. D.S. Fine, Quantum Yang-Mills on the two-sphere, Commun. Math. Phys. 134 (1990) 273 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. E. Witten, On quantum gauge theories in two-dimensions, Commun. Math. Phys. 141 (1991) 153 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. A. Gorsky and N. Nekrasov, Hamiltonian systems of Calogero type and two-dimensional Yang-Mills theory, Nucl. Phys. B 414 (1994) 213 [hep-th/9304047] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  46. D.J. Gross and A. Matytsin, Some properties of large-N two-dimensional Yang-Mills theory, Nucl. Phys. B 437 (1995) 541 [hep-th/9410054] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. V. Branding and N. Drukker, BPS Wilson loops in N = 4 SYM: examples on hyperbolic submanifolds of space-time, Phys. Rev. D 79 (2009) 106006 [arXiv:0902.4586] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  48. J. Gutowski and G. Papadopoulos, AdS calibrations, Phys. Lett. B 462 (1999) 81 [hep-th/9902034] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  49. N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60 (1999) 125006 [hep-th/9904191] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  50. K. Zarembo, Supersymmetric Wilson loops, Nucl. Phys. B 643 (2002) 157 [hep-th/0205160] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  51. A. Dymarsky, S.S. Gubser, Z. Guralnik and J.M. Maldacena, Calibrated surfaces and supersymmetric Wilson loops, JHEP 09 (2006) 057 [hep-th/0604058] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  52. I.R. Klebanov, J.M. Maldacena and C.B. Thorn, III, Dynamics of flux tubes in large-N gauge theories, JHEP 04 (2006) 024 [hep-th/0602255] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  53. N. Drukker, D.J. Gross and A.A. Tseytlin, Green-Schwarz string in AdS 5 × S 5: semiclassical partition function, JHEP 04 (2000) 021 [hep-th/0001204] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  54. M. Beccaria, G.V. Dunne, V. Forini, M. Pawellek and A.A. Tseytlin, Exact computation of one-loop correction to energy of spinning folded string in AdS 5 × S 5, J. Phys. A 43 (2010) 165402 [arXiv:1001.4018] [SPIRES].

    ADS  Google Scholar 

  55. S. Frolov and A.A. Tseytlin, Semiclassical quantization of rotating superstring in AdS 5 × S 5, JHEP 06 (2002) 007 [hep-th/0204226] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  56. M. Kruczenski and A. Tirziu, Matching the circular Wilson loop with dual open string solution at 1-loop in strong coupling, JHEP 05 (2008) 064 [arXiv:0803.0315] [SPIRES].

    Article  MathSciNet  Google Scholar 

  57. N. Drukker, private communication.

  58. N. Drukker and B. Fiol, On the integrability of Wilson loops in AdS 5 × S 5 : Some periodic ansatze, JHEP 01 (2006) 056 [hep-th/0506058] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  59. D.J. Gross and H. Ooguri, Aspects of large-N gauge theory dynamics as seen by string theory, Phys. Rev. D 58 (1998) 106002 [hep-th/9805129] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  60. K. Zarembo, Wilson loop correlator in the AdS/CFT correspondence, Phys. Lett. B 459 (1999) 527 [hep-th/9904149] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  61. P. Olesen and K. Zarembo, Phase transition in Wilson loop correlator from AdS/CFT correspondence, hep-th/0009210 [SPIRES].

  62. M. Staudacher and W. Krauth, Two-dimensional QCD in the Wu-Mandelstam-Leibbrandt prescription, Phys. Rev. D 57 (1998) 2456 [hep-th/9709101] [SPIRES].

    ADS  Google Scholar 

  63. G. Akemann and P.H. Damgaard, Wilson loops in N = 4 supersymmetric Yang-Mills theory from random matrix theory, Phys. Lett. B 513 (2001) 179 [Erratum ibid. B 524 (2002) 400] [hep-th/0101225] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  64. S. Kawamoto, T. Kuroki and A. Miwa, Boundary condition for D-brane from Wilson loop and gravitational interpretation of eigenvalue in matrix model in AdS/CFT correspondence, Phys. Rev. D 79 (2009) 126010 [arXiv:0812.4229] [SPIRES].

    ADS  Google Scholar 

  65. J. Ambjørn, L. Chekhov, C.F. Kristjansen and Y. Makeenko, Matrix model calculations beyond the spherical limit, Nucl. Phys. B 404 (1993) 127 [Erratum ibid. B 449 (1995) 681] [hep-th/9302014] [SPIRES].

    Article  ADS  Google Scholar 

  66. A.S. Alexandrov, A. Mironov and A. Morozov, Partition functions of matrix models as the first special functions of string theory. I: Finite size Hermitean 1-matrix model, Int. J. Mod. Phys. A 19 (2004) 4127 [Teor. Mat. Fiz. 142 (2005) 419] [hep-th/0310113] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  67. J. Ambjørn, J. Jurkiewicz and Y.M. Makeenko, Multiloop correlators for two-dimensional quantum gravity, Phys. Lett. B 251 (1990) 517 [SPIRES].

    ADS  Google Scholar 

  68. G.E. Andrews, R. Askey, and R. Roy, Special functions, Encyclopedia of mathematics and its applications. Vol. 71 (1999).

  69. E. Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992) 303 [hep-th/9204083] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  70. B. Eynard, Eigenvalue distribution of large random matrices, from one matrix to several coupled matrices, Nucl. Phys. B 506 (1997) 633 [cond-mat/9707005] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  71. J.M. Daul, V.A. Kazakov and I.K. Kostov, Rational theories of 2 − D gravity from the two matrix model, Nucl. Phys. B 409 (1993) 311 [hep-th/9303093] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  72. F. Lund and T. Regge, Unified approach to strings and vortices with soliton solutions, Phys. Rev. D 14 (1976) 1524 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  73. K. Pohlmeyer and K.-H. Rehren, Reduction of the two-dimensional O(n) nonlinear σ-model, J. Math. Phys. 20 (1979) 2628 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  74. B.S. Getmanov, Integrable two-dimensional Lorentz invariant nonlinear model of complex scalar field (complex sine-Gordon II), Theor. Math. Phys. 48 (1982) 572 [Teor. Mat. Fiz. 48 (1981) 13] [SPIRES].

    Article  Google Scholar 

  75. H.-Y. Chen, N. Dorey and K. Okamura, Dyonic giant magnons, JHEP 09 (2006) 024 [hep-th/0605155] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  76. H. Hayashi, K. Okamura, R. Suzuki and B. Vicedo, Large winding sector of AdS/CFT, JHEP 11 (2007) 033 [arXiv:0709.4033] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  77. M. Grigoriev and A.A. Tseytlin, Pohlmeyer reduction of AdS 5 × S 5 superstring σ-model, Nucl. Phys. B 800 (2008) 450 [arXiv:0711.0155] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  78. A. Mikhailov and S. Schäfer-Nameki, Sine-Gordon-like action for the Superstring in AdS 5 × S 5, JHEP 05 (2008) 075 [arXiv:0711.0195] [SPIRES].

    Article  ADS  Google Scholar 

  79. A. Jevicki, K. Jin, C. Kalousios and A. Volovich, Generating AdS String Solutions, JHEP 03 (2008) 032 [arXiv:0712.1193] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  80. T. Klose and T. McLoughlin, Interacting finite-size magnons, J. Phys. A 41 (2008) 285401 [arXiv:0803.2324] [SPIRES].

    MathSciNet  Google Scholar 

  81. M. Grigoriev and A.A. Tseytlin, On reduced models for superstrings on AdS n × S n, Int. J. Mod. Phys. A 23 (2008) 2107 [arXiv:0806.2623] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  82. J.L. Miramontes, Pohlmeyer reduction revisited, JHEP 10 (2008) 087 [arXiv:0808.3365] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  83. R. Roiban and A.A. Tseytlin, UV finiteness of Pohlmeyer-reduced form of the AdS 5 × S 5 superstring theory, JHEP 04 (2009) 078 [arXiv:0902.2489] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  84. L.F. Alday and J. Maldacena, Null polygonal Wilson loops and minimal surfaces in Anti-de-Sitter space, JHEP 11 (2009) 082 [arXiv:0904.0663] [SPIRES].

    Article  ADS  Google Scholar 

  85. N. Dorey and T.J. Hollowood, Quantum scattering of charged solitons in the complex sine-Gordon model, Nucl. Phys. B 440 (1995) 215 [hep-th/9410140] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  86. D.M. Hofman and J.M. Maldacena, Giant magnons, J. Phys. A 39 (2006) 13095 [hep-th/0604135] [SPIRES].

    MathSciNet  Google Scholar 

  87. I. Bakas and C. Sourdis, Notes on periodic solitons, Fortsch. Phys. 50 (2002) 815 [hep-th/0205007] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Giombi.

Additional information

ArXiv ePrint: 0905.0665

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giombi, S., Pestun, V. & Ricci, R. Notes on supersymmetric Wilson loops on a two-sphere. J. High Energ. Phys. 2010, 88 (2010). https://doi.org/10.1007/JHEP07(2010)088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2010)088

Keywords

Navigation