Skip to main content
Log in

Unwinding of strings thrown into a fuzzball

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

An Erratum to this article was published on 07 April 2011

Abstract

The traditional black hole has a horizon, with a singularity inside the horizon. But actual microstates of black holes are ‘fuzzballs’, with no horizon and a complex internal structure. We take the simplest hole in string theory—the extremal 2-charge D1D5 hole— and study a simple effect that is a consequence of this internal structure of the fuzzball. Suppose we have a NS1 string wrapping the compact circle of the fuzzball solution. In the traditional black hole solution this circle is directly tensored with the remaining directions, and does not shrink to zero size. Thus a part of the string can fall behind the horizon, but not ‘unwind’. In the fuzzball geometry, this circle makes a nontrivial geometric structure — the KK monople — by mixing with the other directions, and thus shrinks to zero at the core of the monopole. Thus the string can ‘unwind’ in the fuzzball geometry, and the winding charge is then manifested by a nontrivial field strength living on the microstate solution. We compute this field strength for a generic microstate, and comment briefly on the physics suggested by the unwinding process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox, Nucl. Phys. B 623 (2002) 342 [hep-th/0109154] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  2. O. Lunin and S.D. Mathur, Statistical interpretation of Bekenstein entropy for systems with a stretched horizon, Phys. Rev. Lett. 88 (2002) 211303 [hep-th/0202072] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  3. O. Lunin, J.M. Maldacena and L. Maoz, Gravity solutions for the D1-D5 system with angular momentum, hep-th/0212210 [SPIRES].

  4. I. Kanitscheider, K. Skenderis and M. Taylor, Fuzzballs with internal excitations, JHEP 06 (2007) 056 [arXiv:0704.0690] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  5. O. Lunin and S.D. Mathur, The slowly rotating near extremal D1-D5 system as a ‘hot tube’, Nucl. Phys. B 615 (2001) 285 [hep-th/0107113] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  6. S.D. Mathur, A. Saxena and Y.K. Srivastava, Constructing ‘hair’ for the three charge hole, Nucl. Phys. B 680 (2004) 415 [hep-th/0311092] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  7. O. Lunin, Adding momentum to D1-D5 system, JHEP 04 (2004) 054 [hep-th/0404006] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Giusto, S.D. Mathur and A. Saxena, Dual geometries for a set of 3-charge microstates, Nucl. Phys. B 701 (2004) 357 [hep-th/0405017] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Giusto, S.D. Mathur and A. Saxena, 3-charge geometries and their CFT duals, Nucl. Phys. B 710 (2005) 425 [hep-th/0406103] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  10. I. Bena and N.P. Warner, One ring to rule them alland in the darkness bind them?, Adv. Theor. Math. Phys. 9 (2005) 667 [hep-th/0408106] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  11. V. Jejjala, O. Madden, S.F. Ross and G. Titchener, Non-supersymmetric smooth geometries and D1-D5-P bound states, Phys. Rev. D 71 (2005) 124030 [hep-th/0504181] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  12. I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  13. P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP 06 (2006) 007 [hep-th/0505167] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Taylor, General 2 charge geometries, JHEP 03 (2006) 009 [hep-th/0507223] [SPIRES].

    Article  ADS  Google Scholar 

  15. A. Saxena, G. Potvin, S. Giusto and A.W. Peet, Smooth geometries with four charges in four dimensions, JHEP 04 (2006) 010 [hep-th/0509214] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  16. I. Bena, C.-W. Wang and N.P. Warner, The foaming three-charge black hole, Phys. Rev. D 75 (2007) 124026 [hep-th/0604110] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  17. V. Balasubramanian, E.G. Gimon and T.S. Levi, Four Dimensional Black Hole Microstates: From D-branes to Spacetime Foam, JHEP 01 (2008) 056 [hep-th/0606118] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  18. I. Bena, C.-W. Wang and N.P. Warner, Mergers and Typical Black Hole Microstates, JHEP 11 (2006) 042 [hep-th/0608217] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  19. K. Skenderis and M. Taylor, Fuzzball solutions and D1-D5 microstates, Phys. Rev. Lett. 98 (2007) 071601 [hep-th/0609154] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  20. J. Ford, S. Giusto and A. Saxena, A class of BPS time-dependent 3-charge microstates from spectral flow, Nucl. Phys. B 790 (2008) 258 [hep-th/0612227] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  21. I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys. 755 (2008) 1 [hep-th/0701216] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  22. I. Bena, N. Bobev and N.P. Warner, Bubbles on Manifolds with a U(1) Isometry, JHEP 08 (2007) 004 [arXiv:0705.3641] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  23. E.G. Gimon and T.S. Levi, Black Ring Deconstruction, JHEP 04 (2008) 098 [arXiv:0706.3394] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  24. I. Bena, C.-W. Wang and N.P. Warner, Plumbing the Abyss: Black Ring Microstates, JHEP 07 (2008) 019 [arXiv:0706.3786] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  25. V. Cardoso, O.J.C. Dias and R.C. Myers, On the gravitational stability of D1-D5-P black holes, Phys. Rev. D 76 (2007) 105015 [arXiv:0707.3406] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  26. S. Giusto, S.F. Ross and A. Saxena, Non-supersymmetric microstates of the D1-D5-KK system, JHEP 12 (2007) 065 [arXiv:0708.3845] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  27. B.D. Chowdhury and S.D. Mathur, Radiation from the non-extremal fuzzball, Class. Quant. Grav. 25 (2008) 135005 [arXiv:0711.4817] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  28. K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept. 467 (2008) 117 [arXiv:0804.0552] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  29. I. Bena, N. Bobev, C. Ruef and N.P. Warner, Entropy Enhancement and Black Hole Microstates, arXiv:0804.4487 [SPIRES].

  30. B.D. Chowdhury and S.D. Mathur, Pair creation in non-extremal fuzzball geometries, Class. Quant. Grav. 25 (2008) 225021 [arXiv:0806.2309] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  31. J. de Boer, S. El-Showk, I. Messamah and D. Van den Bleeken, Quantizing N = 2 Multicenter Solutions, JHEP 05 (2009) 002 [arXiv:0807.4556] [SPIRES].

    Article  Google Scholar 

  32. B.D. Chowdhury and S.D. Mathur, Non-extremal fuzzballs and ergoregion emission, Class. Quant. Grav. 26 (2009) 035006 [arXiv:0810.2951] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  33. V. Balasubramanian, J. de Boer, S. El-Showk and I. Messamah, Black Holes as Effective Geometries, Class. Quant. Grav. 25 (2008) 214004 [arXiv:0811.0263] [SPIRES].

    Article  ADS  Google Scholar 

  34. I. Bena, N. Bobev, C. Ruef and N.P. Warner, Supertubes in Bubbling Backgrounds: Born-Infeld Meets Supergravity, JHEP 07 (2009) 106 [arXiv:0812.2942] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  35. S.G. Avery and B.D. Chowdhury, Emission from the D1D5 CFT: Higher Twists, arXiv:0907.1663 [SPIRES].

  36. J.H. Al-Alawi and S.F. Ross, Spectral Flow of the Non-Supersymmetric Microstates of the D1-D5-KK System, JHEP 10 (2009) 082 [arXiv:0908.0417] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  37. I. Bena, S. Giusto, C. Ruef and N.P. Warner, A (Running) Bolt for New Reasons, JHEP 11 (2009) 089 [arXiv:0909.2559] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  38. N. Bobev and C. Ruef, The Nuts and Bolts of Einstein-Maxwell Solutions, JHEP 01 (2010) 124 [arXiv:0912.0010] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  39. S.G. Avery, B.D. Chowdhury and S.D. Mathur, Emission from the D1D5 CFT, JHEP 10 (2009) 065 [arXiv:0906.2015] [SPIRES].

    Article  ADS  Google Scholar 

  40. S. Giusto, J.F. Morales and R. Russo, D1D5 microstate geometries from string amplitudes, JHEP 03 (2010) 130 [arXiv:0912.2270] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  41. S.D. Mathur, The fuzzball proposal for black holes: An elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [SPIRES].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. S.D. Mathur, The quantum structure of black holes, Class. Quant. Grav. 23 (2006) R115 [hep-th/0510180] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  43. R. Gregory, J.A. Harvey and G.W. Moore, Unwinding strings and T-duality of Kaluza-Klein and H-monopoles, Adv. Theor. Math. Phys. 1 (1997) 283 [hep-th/9708086] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  44. A. Sen, Extremal black holes and elementary string states, Mod. Phys. Lett. A 10 (1995) 2081 [hep-th/9504147] [SPIRES].

    ADS  Google Scholar 

  45. O. Lunin, S.D. Mathur and A. Saxena, What is the gravity dual of a chiral primary?, Nucl. Phys. B 655 (2003) 185 [hep-th/0211292] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  46. A. Dabholkar, Exact counting of black hole microstates, Phys. Rev. Lett. 94 (2005) 241301 [hep-th/0409148] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  47. A. Dabholkar, R. Kallosh and A. Maloney, A stringy cloak for a classical singularity, JHEP 12 (2004) 059 [hep-th/0410076] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  48. S. Giusto and S.D. Mathur, Fuzzball geometries and higher derivative corrections for extremal holes, Nucl. Phys. B 738 (2006) 48 [hep-th/0412133] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  49. A. Sen, Two Charge System Revisited: Small Black Holes or Horizonless Solutions?, JHEP 05 (2010) 097 [arXiv:0908.3402] [SPIRES].

    Article  ADS  Google Scholar 

  50. K.S. Thorne, R.H. Price and D.A. Macdonald, Black holes: the membrane paradigm, Yale University Press, New Haven, U.S.A. (1986).

    Google Scholar 

  51. S.D. Mathur, Black hole size and phase space volumes, arXiv:0706.3884 [SPIRES].

  52. V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, The library of Babel: On the origin of gravitational thermodynamics, JHEP 12 (2005) 006 [hep-th/0508023] [SPIRES].

    ADS  Google Scholar 

  53. S.R. Das and G. Mandal, Microstate Dependence of Scattering from the D1-D5 System, JHEP 04 (2009) 036 [arXiv:0812.1358] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Giusto.

Additional information

ArXiv ePrint: 1004.4142

An erratum to this article can be found online at http://dx.doi.org/10.1007/JHEP04(2011)032.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giusto, S., Mathur, S.D. Unwinding of strings thrown into a fuzzball. J. High Energ. Phys. 2010, 9 (2010). https://doi.org/10.1007/JHEP07(2010)009

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2010)009

Keywords

Navigation