Dual conformal symmetry and iterative integrals in six dimensions

Abstract

In this article, we continue the investigation of [1] regarding iterative properties of dual conformal integrals in higher dimensions. In d = 4, iterative properties of four and five point dual conformal integrals manifest themselves in the famous BDS ansatz conjecture. In [1] it was also conjectured that a similar structure of integrals may reappear in d = 6. We show that one can systematically, order by order in the number of loops, construct combinations of d = 6 integrals with 1/(p2)2 propagators with an iterative structure similar to the d = 4 case. Such combinations as a whole also respect dual conformal invariance but individual integrals may not.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    J. Bhattacharya and A.E. Lipstein, 6d dual conformal symmetry and minimal volumes in AdS, JHEP12 (2016) 105 [arXiv:1611.02179] [INSPIRE].

  2. [2]

    H. Elvang and Y.-T. Huang, Scattering amplitudes, arXiv:1308.1697 [INSPIRE].

  3. [3]

    S. Weinzierl, Tales of 1001 gluons, Phys. Rept.676 (2017) 1 [arXiv:1610.05318] [INSPIRE].

  4. [4]

    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys.B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].

  5. [5]

    J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory, JHEP05 (2009) 046 [arXiv:0902.2987] [INSPIRE].

  6. [6]

    Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev.D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].

  7. [7]

    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Generalized unitarity for N = 4 super-amplitudes, Nucl. Phys.B 869 (2013) 452 [arXiv:0808.0491] [INSPIRE].

  8. [8]

    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys.B 815 (2009) 142 [arXiv:0803.1466] [INSPIRE].

  9. [9]

    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP06 (2007) 064 [arXiv:0705.0303] [INSPIRE].

  10. [10]

    K.-W. Huang, R. Roiban and A.A. Tseytlin, Self-dual 6d 2-form fields coupled to non-Abelian gauge field: quantum corrections, JHEP06 (2018) 134 [arXiv:1804.05059] [INSPIRE].

  11. [11]

    N. Lambert and C. Papageorgakis, Non-Abelian (2, 0) tensor multiplets and 3-algebras, JHEP08 (2010) 083 [arXiv:1007.2982] [INSPIRE].

  12. [12]

    P.-M. Ho, K.-W. Huang and Y. Matsuo, A non-Abelian self-dual gauge theory in 5 + 1 dimensions, JHEP07 (2011) 021 [arXiv:1104.4040] [INSPIRE].

  13. [13]

    F. Bonetti, T.W. Grimm and S. Hohenegger, Non-Abelian tensor towers and (2, 0) superconformal theories, JHEP05 (2013) 129 [arXiv:1209.3017] [INSPIRE].

  14. [14]

    C. Sämann and L. Schmidt, Towards an M5-brane model I: a 6d superconformal field theory, J. Math. Phys.59 (2018) 043502 [arXiv:1712.06623] [INSPIRE].

  15. [15]

    T. Dennen and Y.-T. Huang, Dual conformal properties of six-dimensional maximal super Yang-Mills amplitudes, JHEP01 (2011) 140 [arXiv:1010.5874] [INSPIRE].

  16. [16]

    Y.-T. Huang and A.E. Lipstein, Amplitudes of 3D and 6D maximal superconformal theories in supertwistor space, JHEP10 (2010) 007 [arXiv:1004.4735] [INSPIRE].

  17. [17]

    M.R. Douglas, On D = 5 super Yang-Mills theory and (2, 0) theory, JHEP02 (2011) 011 [arXiv:1012.2880] [INSPIRE].

  18. [18]

    G. Bossard, E. Ivanov and A. Smilga, Ultraviolet behavior of 6D supersymmetric Yang-Mills theories and harmonic superspace, JHEP12 (2015) 085 [arXiv:1509.08027] [INSPIRE].

  19. [19]

    I.L. Buchbinder, E.A. Ivanov and B.S. Merzlikin, Low-energy 6D, N = (1, 1) SYM effective action beyond the leading approximation, Nucl. Phys.B 954 (2020) 114995 [arXiv:1912.02634] [INSPIRE].

  20. [20]

    I.L. Buchbinder, A.S. Budekhina and B.S. Merzlikin, On the component structure of one-loop effective actions in 6D, N = (1, 0) and N = (1, 1) supersymmetric gauge theories, Mod. Phys. Lett.A 35 (2019) 2050060 [arXiv:1909.10789] [INSPIRE].

  21. [21]

    I.L. Buchbinder, E.A. Ivanov, B.S. Merzlikin and K.V. Stepanyantz, On gauge dependence of the one-loop divergences in 6D, N = (1, 0) and N = (1, 1) SYM theories, Phys. Lett.B 798 (2019) 134957 [arXiv:1907.12302] [INSPIRE].

  22. [22]

    I.L. Buchbinder, E.A. Ivanov, B.S. Merzlikin and K.V. Stepanyantz, Gauge dependence of the one-loop divergences in 6D, N = (1, 0) Abelian theory, Nucl. Phys.B 936 (2018) 638 [arXiv:1808.08446] [INSPIRE].

  23. [23]

    I.L. Buchbinder, E.A. Ivanov and B.S. Merzlikin, Leading low-energy effective action in 6D, N = (1, 1) SYM theory, JHEP09 (2018) 039 [arXiv:1711.03302] [INSPIRE].

  24. [24]

    L.V. Bork, D.I. Kazakov and D.E. Vlasenko, On the amplitudes in N = (1, 1) D = 6 SYM, JHEP11 (2013) 065 [arXiv:1308.0117] [INSPIRE].

  25. [25]

    L.V. Bork, D.I. Kazakov and D.E. Vlasenko, Challenges of D = 6 N = (1, 1) SYM theory, Phys. Lett.B 734 (2014) 111 [arXiv:1404.6998] [INSPIRE].

  26. [26]

    L.V. Bork, D.I. Kazakov, M.V. Kompaniets, D.M. Tolkachev and D.E. Vlasenko, Divergences in maximal supersymmetric Yang-Mills theories in diverse dimensions, JHEP11 (2015) 059 [arXiv:1508.05570] [INSPIRE].

  27. [27]

    N.I. Usyukina and A.I. Davydychev, Exact results for three and four point ladder diagrams with an arbitrary number of rungs, Phys. Lett.B 305 (1993) 136 [INSPIRE].

  28. [28]

    N.I. Usyukina and A.I. Davydychev, Some exact results for two loop diagrams with three and four external lines, Phys. Atom. Nucl.56 (1993) 1553 [Yad. Fiz.56 (1993) 172] [hep-ph/9307327] [INSPIRE].

  29. [29]

    L.F. Alday, J.M. Henn, J. Plefka and T. Schuster, Scattering into the fifth dimension of N = 4 super Yang-Mills, JHEP01 (2010) 077 [arXiv:0908.0684] [INSPIRE].

  30. [30]

    J.M. Henn, S.G. Naculich, H.J. Schnitzer and M. Spradlin, Higgs-regularized three-loop four-gluon amplitude in N = 4 SYM: exponentiation and Regge limits, JHEP04 (2010) 038 [arXiv:1001.1358] [INSPIRE].

  31. [31]

    Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The four-loop planar amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory, Phys. Rev.D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].

  32. [32]

    Z. Bern, J.J.M. Carrasco, H. Johansson and R. Roiban, The five-loop four-point amplitude of N = 4 super-Yang-Mills theory, Phys. Rev. Lett.109 (2012) 241602 [arXiv:1207.6666] [INSPIRE].

  33. [33]

    J.L. Bourjaily, A. DiRe, A. Shaikh, M. Spradlin and A. Volovich, The soft-collinear bootstrap: N = 4 Yang-Mills amplitudes at six and seven loops, JHEP03 (2012) 032 [arXiv:1112.6432] [INSPIRE].

  34. [34]

    V.A. Smirnov, Analytic tools for Feynman integrals, Springer Tracts Mod. Phys.250 (2012) 1 [INSPIRE].

  35. [35]

    J. Gluza, K. Kajda and T. Riemann, AMBRE: a Mathematica package for the construction of Mellin-Barnes representations for Feynman integrals, Comput. Phys. Commun.177 (2007) 879 [arXiv:0704.2423] [INSPIRE].

  36. [36]

    M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys. Commun.175 (2006) 559 [hep-ph/0511200] [INSPIRE].

  37. [37]

    A.V. Smirnov and V.A. Smirnov, On the resolution of singularities of multiple Mellin-Barnes integrals, Eur. Phys. J.C 62 (2009) 445 [arXiv:0901.0386] [INSPIRE].

  38. [38]

    M. Ochman and T. Riemann, MBsums — a Mathematica package for the representation of Mellin-Barnes integrals by multiple sums, Acta Phys. Polon.B 46 (2015) 2117 [arXiv:1511.01323] [INSPIRE].

  39. [39]

    D. Nguyen, M. Spradlin and A. Volovich, New dual conformally invariant off-shell integrals, Phys. Rev.D 77 (2008) 025018 [arXiv:0709.4665] [INSPIRE].

  40. [40]

    Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop g → gg splitting amplitudes in QCD, JHEP08 (2004) 012 [hep-ph/0404293] [INSPIRE].

  41. [41]

    C. Anastasiou, Z. Bern, L.J. Dixon and D.A. Kosower, Planar amplitudes in maximally supersymmetric Yang-Mills theory, Phys. Rev. Lett.91 (2003) 251602 [hep-th/0309040] [INSPIRE].

  42. [42]

    J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys.B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].

  43. [43]

    M.S. Bianchi and M. Leoni, On the ABJM four-point amplitude at three loops and BDS exponentiation, JHEP11 (2014) 077 [arXiv:1403.3398] [INSPIRE].

  44. [44]

    M.S. Bianchi, M. Leoni and S. Penati, An all order identity between ABJM and N = 4 SYM four-point amplitudes, JHEP04 (2012) 045 [arXiv:1112.3649] [INSPIRE].

  45. [45]

    D. Grabner, N. Gromov, V. Kazakov and G. Korchemsky, Strongly γ-deformed N = 4 supersymmetric Yang-Mills theory as an integrable conformal field theory, Phys. Rev. Lett.120 (2018) 111601 [arXiv:1711.04786] [INSPIRE].

  46. [46]

    V. Kazakov and E. Olivucci, Biscalar integrable conformal field theories in any dimension, Phys. Rev. Lett.121 (2018) 131601 [arXiv:1801.09844] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to R.M. Iakhibbaev.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2002.05479

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bork, L., Iakhibbaev, R., Kazakov, D. et al. Dual conformal symmetry and iterative integrals in six dimensions. J. High Energ. Phys. 2020, 186 (2020). https://doi.org/10.1007/JHEP06(2020)186

Download citation

Keywords

  • Scattering Amplitudes
  • Supersymmetric Gauge Theory
  • Field Theories in Higher Dimensions