Holographic entanglement entropy and complexity of microstate geometries

Abstract

We study holographic entanglement entropy and holographic complexity in a two-charge, \( \frac{1}{4} \)-BPS family of solutions of type IIB supergravity, controlled by one dimensionless parameter. All the geometries in this family are asymptotically AdS3×𝕊3×𝕋4 and, varying the parameter that controls them, they interpolate between the global AdS3× 𝕊3× 𝕋4 and the massless BTZ3× 𝕊3× 𝕋4 geometry. Due to AdS/CFT duality, these geometries are dual to pure CFT heavy states.

We find that there is no emergence of entanglement shadow for all the values of the parameter and we discuss the relation with the massless BTZ result, underlying the relevance of the nature of the dual states.

We also compute the holographic complexity of formation of these geometries, finding a nice monotonic function that interpolates between the pure AdS3 result and the massless BTZ one.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

    MATH  Google Scholar 

  2. [2]

    L. Susskind, Computational complexity and black hole horizons, Fortsch. Phys.64 (2016) 24 [Addendum ibid.64 (2016) 44] [arXiv:1403.5695] [INSPIRE].

  3. [3]

    L. Susskind, Entanglement is not enough, Fortsch. Phys.64 (2016) 49 [arXiv:1411.0690] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  4. [4]

    D. Stanford and L. Susskind, Complexity and shock wave geometries, Phys. Rev. D90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  6. [6]

    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP08 (2006) 045 [hep-th/0605073] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  7. [7]

    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  8. [8]

    M. Alishahiha, Holographic complexity, Phys. Rev. D92 (2015) 126009 [arXiv:1509.06614] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  9. [9]

    A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic complexity equals bulk action?, Phys. Rev. Lett.116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].

    ADS  Google Scholar 

  10. [10]

    A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action and black holes, Phys. Rev. D93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  11. [11]

    L. Lehner, R.C. Myers, E. Poisson and R.D. Sorkin, Gravitational action with null boundaries, Phys. Rev. D94 (2016) 084046 [arXiv:1609.00207] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  12. [12]

    S. Chapman, H. Marrochio and R.C. Myers, Complexity of formation in holography, JHEP01 (2017) 062 [arXiv:1610.08063] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  13. [13]

    P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  14. [14]

    M. Rangamani and T. Takayanagi, Holographic entanglement entropy, Lect. Notes Phys.931 (2017) 1 [arXiv:1609.01287] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  15. [15]

    B. Michel and A. Puhm, Corrections in the relative entropy of black hole microstates, JHEP07 (2018) 179 [arXiv:1801.02615] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  16. [16]

    N. Seiberg and E. Witten, The D1/D5 system and singular CFT, JHEP04 (1999) 017 [hep-th/9903224] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  17. [17]

    J.R. David, G. Mandal and S.R. Wadia, Microscopic formulation of black holes in string theory, Phys. Rept.369 (2002) 549 [hep-th/0203048] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  18. [18]

    S.G. Avery, Using the D1/D5 CFT to understand black holes, Ph.D. thesis, Ohio State U., Columbus, OH, U.S.A. (2010) [arXiv:1012.0072] [INSPIRE].

  19. [19]

    V. Balasubramanian, P. Kraus and M. Shigemori, Massless black holes and black rings as effective geometries of the D1-D5 system, Class. Quant. Grav.22 (2005) 4803 [hep-th/0508110] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  20. [20]

    A. Bombini, A. Galliani, S. Giusto, E. Moscato and R. Russo, Unitary 4-point correlators from classical geometries, Eur. Phys. J. C78 (2018) 8 [arXiv:1710.06820] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    V.E. Hubeny, H. Maxfield, M. Rangamani and E. Tonni, Holographic entanglement plateaux, JHEP08 (2013) 092 [arXiv:1306.4004] [INSPIRE].

    ADS  Google Scholar 

  22. [22]

    B. Freivogel, R. Jefferson, L. Kabir, B. Mosk and I.-S. Yang, Casting shadows on holographic reconstruction, Phys. Rev. D91 (2015) 086013 [arXiv:1412.5175] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    V. Balasubramanian, B.D. Chowdhury, B. Czech and J. de Boer, Entwinement and the emergence of spacetime, JHEP01 (2015) 048 [arXiv:1406.5859] [INSPIRE].

    ADS  MATH  Google Scholar 

  24. [24]

    O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox, Nucl. Phys. B623 (2002) 342 [hep-th/0109154] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  25. [25]

    O. Lunin, J.M. Maldacena and L. Maoz, Gravity solutions for the D1-D5 system with angular momentum, hep-th/0212210 [INSPIRE].

  26. [26]

    S.D. Mathur, A. Saxena and Y.K. Srivastava, Constructing ‘hair’ for the three charge hole, Nucl. Phys. B680 (2004) 415 [hep-th/0311092] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  27. [27]

    O. Lunin, Adding momentum to D1-D5 system, JHEP04 (2004) 054 [hep-th/0404006] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  28. [28]

    S. Giusto, S.D. Mathur and A. Saxena, 3-charge geometries and their CFT duals, Nucl. Phys. B710 (2005) 425 [hep-th/0406103] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  29. [29]

    S. Giusto, S.D. Mathur and A. Saxena, Dual geometries for a set of 3-charge microstates, Nucl. Phys. B701 (2004) 357 [hep-th/0405017] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  30. [30]

    K. Skenderis and M. Taylor, Fuzzball solutions and D1-D5 microstates, Phys. Rev. Lett.98 (2007) 071601 [hep-th/0609154] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  31. [31]

    I. Kanitscheider, K. Skenderis and M. Taylor, Holographic anatomy of fuzzballs, JHEP04 (2007) 023 [hep-th/0611171] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  32. [32]

    K. Skenderis and M. Taylor, Anatomy of bubbling solutions, JHEP09 (2007) 019 [arXiv:0706.0216] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  33. [33]

    I. Kanitscheider, K. Skenderis and M. Taylor, Fuzzballs with internal excitations, JHEP06 (2007) 056 [arXiv:0704.0690] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  34. [34]

    K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept.467 (2008) 117 [arXiv:0804.0552] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  35. [35]

    S.D. Mathur and D. Turton, Microstates at the boundary of AdS, JHEP05 (2012) 014 [arXiv:1112.6413] [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    S.D. Mathur and D. Turton, Momentum-carrying waves on D1-D5 microstate geometries, Nucl. Phys. B862 (2012) 764 [arXiv:1202.6421] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  37. [37]

    O. Lunin, S.D. Mathur and D. Turton, Adding momentum to supersymmetric geometries, Nucl. Phys. B868 (2013) 383 [arXiv:1208.1770] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  38. [38]

    S. Giusto, L. Martucci, M. Petrini and R. Russo, 6D microstate geometries from 10D structures, Nucl. Phys. B876 (2013) 509 [arXiv:1306.1745] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  39. [39]

    S. Giusto and R. Russo, Superdescendants of the D1-D5 CFT and their dual 3-charge geometries, JHEP03 (2014) 007 [arXiv:1311.5536] [INSPIRE].

    ADS  Google Scholar 

  40. [40]

    I. Bena, S. Giusto, M. Shigemori and N.P. Warner, Supersymmetric solutions in six dimensions: a linear structure, JHEP03 (2012) 084 [arXiv:1110.2781] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  41. [41]

    I. Bena, S. Giusto, R. Russo, M. Shigemori and N.P. Warner, Habemus superstratum! A constructive proof of the existence of superstrata, JHEP05 (2015) 110 [arXiv:1503.01463] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  42. [42]

    I. Bena et al., Smooth horizonless geometries deep inside the black-hole regime, Phys. Rev. Lett.117 (2016) 201601 [arXiv:1607.03908] [INSPIRE].

    ADS  Google Scholar 

  43. [43]

    I. Bena et al., Asymptotically-flat supergravity solutions deep inside the black-hole regime, JHEP02 (2018) 014 [arXiv:1711.10474] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  44. [44]

    A. Bombini and S. Giusto, Non-extremal superdescendants of the D1-D5 CFT, JHEP10 (2017) 023 [arXiv:1706.09761] [INSPIRE].

    ADS  MATH  Google Scholar 

  45. [45]

    E. Bakhshaei and A. Bombini, Three-charge superstrata with internal excitations, Class. Quant. Grav.36 (2019) 055001 [arXiv:1811.00067] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  46. [46]

    I. Bena, P. Heidmann and P.F. Ramirez, A systematic construction of microstate geometries with low angular momentum, JHEP10 (2017) 217 [arXiv:1709.02812] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  47. [47]

    I. Bena, P. Heidmann and D. Turton, AdS2holography: mind the cap, JHEP12 (2018) 028 [arXiv:1806.02834] [INSPIRE].

    ADS  MATH  Google Scholar 

  48. [48]

    P. Heidmann, Bubbling the NHEK, JHEP01 (2019) 108 [arXiv:1811.08256] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  49. [49]

    R. Walker, D1-D5-P superstrata in 5 and 6 dimensions: separable wave equations and prepotentials, JHEP09 (2019) 117 [arXiv:1906.04200] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  50. [50]

    P. Heidmann and N.P. Warner, Superstratum symbiosis, JHEP09 (2019) 059 [arXiv:1903.07631] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  51. [51]

    S. Giusto and R. Russo, Entanglement entropy and D1-D5 geometries, Phys. Rev. D90 (2014) 066004 [arXiv:1405.6185] [INSPIRE].

    ADS  Google Scholar 

  52. [52]

    S. Giusto, E. Moscato and R. Russo, AdS3holography for 1/4 and 1/8 BPS geometries, JHEP11 (2015) 004 [arXiv:1507.00945] [INSPIRE].

    ADS  MATH  Google Scholar 

  53. [53]

    E. Moscato, Black hole microstates and holography in the D1-D5 CFT, Ph.D. thesis, Queen Mary U., London, U.K., September 2017 [INSPIRE].

  54. [54]

    I. Bena, D. Turton, R. Walker and N.P. Warner, Integrability and black-hole microstate geometries, JHEP11 (2017) 021 [arXiv:1709.01107] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  55. [55]

    A. Galliani, S. Giusto, E. Moscato and R. Russo, Correlators at large c without information loss, JHEP09 (2016) 065 [arXiv:1606.01119] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  56. [56]

    A. Galliani, S. Giusto and R. Russo, Holographic 4-point correlators with heavy states, JHEP10 (2017) 040 [arXiv:1705.09250] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  57. [57]

    A. Bombini and A. Galliani, AdS3four-point functions from \( \frac{1}{8} \)-BPS states, JHEP06 (2019) 044 [arXiv:1904.02656] [INSPIRE].

    ADS  MATH  Google Scholar 

  58. [58]

    J. Tian, J. Hou and B. Chen, Holographic correlators on integrable superstrata, Nucl. Phys. B948 (2019) 114766 [arXiv:1904.04532] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  59. [59]

    I. Bena, P. Heidmann, R. Monten and N.P. Warner, Thermal decay without information loss in horizonless microstate geometries, SciPost Phys.7 (2019) 063 [arXiv:1905.05194] [INSPIRE].

    ADS  Google Scholar 

  60. [60]

    T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  61. [61]

    T. Nishioka, Entanglement entropy: holography and renormalization group, Rev. Mod. Phys.90 (2018) 035007 [arXiv:1801.10352] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  62. [62]

    V. Balasubramanian, A. Lawrence, A. Rolph and S. Ross, Entanglement shadows in LLM geometries, JHEP11 (2017) 159 [arXiv:1704.03448] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  63. [63]

    S. Carlip, Lectures on (2 + 1) dimensional gravity, J. Korean Phys. Soc.28 (1995) S447 [gr-qc/9503024] [INSPIRE].

  64. [64]

    D. Carmi, R.C. Myers and P. Rath, Comments on holographic complexity, JHEP03 (2017) 118 [arXiv:1612.00433] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  65. [65]

    A. Reynolds and S.F. Ross, Divergences in holographic complexity, Class. Quant. Grav.34 (2017) 105004 [arXiv:1612.05439] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  66. [66]

    D. Carmi, S. Chapman, H. Marrochio, R.C. Myers and S. Sugishita, On the time dependence of holographic complexity, JHEP11 (2017) 188 [arXiv:1709.10184] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  67. [67]

    A.P. Reynolds and S.F. Ross, Complexity of the AdS soliton, Class. Quant. Grav.35 (2018) 095006 [arXiv:1712.03732] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  68. [68]

    S. Chapman, H. Marrochio and R.C. Myers, Holographic complexity in Vaidya spacetimes. Part I, JHEP06 (2018) 046 [arXiv:1804.07410] [INSPIRE].

  69. [69]

    L. Susskind, PiTP lectures on complexity and black holes, arXiv:1808.09941 [INSPIRE].

  70. [70]

    L. Susskind, Three lectures on complexity and black holes, arXiv:1810.11563 [INSPIRE].

  71. [71]

    S. Chapman et al., Complexity and entanglement for thermofield double states, SciPost Phys.6 (2019) 034 [arXiv:1810.05151] [INSPIRE].

    ADS  Google Scholar 

  72. [72]

    V. Balasubramanian, M. DeCross, A. Kar and O. Parrikar, Binding complexity and multiparty entanglement, JHEP02 (2019) 069 [arXiv:1811.04085] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  73. [73]

    K. Goto, H. Marrochio, R.C. Myers, L. Queimada and B. Yoshida, Holographic complexity equals which action?, JHEP02 (2019) 160 [arXiv:1901.00014] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  74. [74]

    A. Bernamonti, F. Galli, J. Hernandez, R.C. Myers, S.-M. Ruan and J. Simón, First law of holographic complexity, Phys. Rev. Lett.123 (2019) 081601 [arXiv:1903.04511] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  75. [75]

    S.F. Ross, Complexity and typical microstates, Phys. Rev. D100 (2019) 066014 [arXiv:1905.06211] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  76. [76]

    M. Cadoni and M. Melis, Holographic entanglement entropy of the BTZ black hole, Found. Phys.40 (2010) 638 [arXiv:0907.1559] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  77. [77]

    J. de Boer, K. Papadodimas and E. Verlinde, Black hole Berry phase, Phys. Rev. Lett.103 (2009) 131301 [arXiv:0809.5062] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giulia Fardelli.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 1910.01831

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bombini, A., Fardelli, G. Holographic entanglement entropy and complexity of microstate geometries. J. High Energ. Phys. 2020, 181 (2020). https://doi.org/10.1007/JHEP06(2020)181

Download citation

Keywords

  • AdS-CFT Correspondence
  • Black Holes in String Theory