The confining transition in the bosonic BMN matrix model


We study the confining/deconfining phase transition in the mass deformed Yang-Mills matrix model which is obtained by the dimensional reduction of the bosonic sector of the four-dimensional maximally supersymmetric Yang-Mills theory compactified on the three sphere, i.e. the bosonic BMN model. The 1/D (with D the number of matrices) expansion suggests that the model may have two closely separated transitions. However, using a second order lattice formulation of the model we find that for the small value of the mass parameter, μ = 2, those two apparent critical temperatures merge at large N , leaving only a single weakly first-order phase transition, in agreement with recent numerical results for μ = 0 (the bosonic BFSS model).

A preprint version of the article is available at ArXiv.


  1. [1]

    B. de Wit, J. Hoppe and H. Nicolai, On the Quantum Mechanics of Supermembranes, Nucl. Phys. B305 (1988) 545 [INSPIRE].

  2. [2]

    T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: A Conjecture, Phys. Rev. D55 (1997) 5112 [hep-th/9610043] [INSPIRE].

  3. [3]

    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N = 4 superYang-Mills, JHEP04 (2002) 013 [hep-th/0202021] [INSPIRE].

  4. [4]

    N. Kim and J.-H. Park, Massive super Yang-Mills quantum mechanics: Classification and the relation to supermembrane, Nucl. Phys. B759 (2006) 249 [hep-th/0607005] [INSPIRE].

  5. [5]

    O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The Hagedorn-deconfinement phase transition in weakly coupled large N gauge theories, hep-th/0310285 [INSPIRE].

  6. [6]

    K. Furuuchi, E. Schreiber and G.W. Semenoff, Five-brane thermodynamics from the matrix model, hep-th/0310286 [INSPIRE].

  7. [7]

    G.W. Semenoff, Black holes and thermodynamic states of matrix models, in From fields to strings, vol. 3, M. Shifman et al. eds., pp. 2009–2034 (2005) [INSPIRE].

  8. [8]

    O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas, M. Van Raamsdonk and T. Wiseman, The Phase structure of low dimensional large N gauge theories on Tori, JHEP01 (2006) 140 [hep-th/0508077] [INSPIRE].

  9. [9]

    Y. Asano, V.G. Filev, S. Kováčik and D. O’Connor, The non-perturbative phase diagram of the BMN matrix model, JHEP07 (2018) 152 [arXiv:1805.05314] [INSPIRE].

  10. [10]

    R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett.70 (1993) 2837 [hep-th/9301052] [INSPIRE].

  11. [11]

    R. Gregory and R. Laflamme, The Instability of charged black strings and p-branes, Nucl. Phys. B428 (1994) 399 [hep-th/9404071] [INSPIRE].

  12. [12]

    O. Aharony, J. Marsano, S. Minwalla and T. Wiseman, Black hole-black string phase transitions in thermal 1 + 1 dimensional supersymmetric Yang-Mills theory on a circle, Class. Quant. Grav.21 (2004) 5169 [hep-th/0406210] [INSPIRE].

  13. [13]

    N. Kawahara, J. Nishimura and S. Takeuchi, Phase structure of matrix quantum mechanics at finite temperature, JHEP10 (2007) 097 [arXiv:0706.3517] [INSPIRE].

  14. [14]

    V.G. Filev and D. O’Connor, The BFSS model on the lattice, JHEP05 (2016) 167 [arXiv:1506.01366] [INSPIRE].

  15. [15]

    T. Azuma, T. Morita and S. Takeuchi, Hagedorn Instability in Dimensionally Reduced Large-N Gauge Theories as Gregory-Laflamme and Rayleigh-Plateau Instabilities, Phys. Rev. Lett.113 (2014) 091603 [arXiv:1403.7764] [INSPIRE].

  16. [16]

    G. Mandal, M. Mahato and T. Morita, Phases of one dimensional large N gauge theory in a 1/D expansion, JHEP02 (2010) 034 [arXiv:0910.4526] [INSPIRE].

  17. [17]

    G. Bergner, N. Bodendorfer, M. Hanada, E. Rinaldi, A. Schäfer and P. Vranas, Thermal phase transition in Yang-Mills matrix model, JHEP01 (2020) 053 [arXiv:1909.04592] [INSPIRE].

  18. [18]

    T. Morita and H. Yoshida, Critical Dimension and Negative Specific Heat in One-dimensional Large-N Reduced Models, Phys. Rev. D101 (2020) 106010 [arXiv:2001.02109] [INSPIRE].

  19. [19]

    M. Hanada, G. Ishiki and H. Watanabe, Partial Deconfinement, JHEP03 (2019) 145 [Erratum ibid.10 (2019) 029] [arXiv:1812.05494] [INSPIRE].

  20. [20]

    M. Hanada and J. Maltz, A proposal of the gauge theory description of the small Schwarzschild black hole in AdS5× S5 , JHEP02 (2017) 012 [arXiv:1608.03276] [INSPIRE].

  21. [21]

    D. Berenstein, Submatrix deconfinement and small black holes in AdS, JHEP09 (2018) 054 [arXiv:1806.05729] [INSPIRE].

  22. [22]

    M. Hanada, A. Jevicki, C. Peng and N. Wintergerst, Anatomy of Deconfinement, JHEP12 (2019) 167 [arXiv:1909.09118] [INSPIRE].

  23. [23]

    R. Emparan, R. Luna, M. Martínez, R. Suzuki and K. Tanabe, Phases and Stability of Non-Uniform Black Strings, JHEP05 (2018) 104 [arXiv:1802.08191] [INSPIRE].

  24. [24]

    Ó.J.C. Dias, J.E. Santos and B. Way, Localised and nonuniform thermal states of super-Yang-Mills on a circle, JHEP06 (2017) 029 [arXiv:1702.07718] [INSPIRE].

  25. [25]

    B. Cardona and P. Figueras, Critical Kaluza-Klein black holes and black strings in D = 10, JHEP11 (2018) 120 [arXiv:1806.11129] [INSPIRE].

  26. [26]

    M. Ammon, M. Kalisch and S. Moeckel, Notes on ten-dimensional localized black holes and deconfined states in two-dimensional SYM, JHEP11 (2018) 090 [arXiv:1806.11174] [INSPIRE].

  27. [27]

    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys.2 (1998) 505 [hep-th/9803131] [INSPIRE].

  28. [28]

    Y. Asano and D. O’Connor, Wilson fermions in thermodynamics of Matrix theory, in preparation.

  29. [29]

    S. Hadizadeh, B. Ramadanovic, G.W. Semenoff and D. Young, Free energy and phase transition of the matrix model on a plane-wave, Phys. Rev. D71 (2005) 065016 [hep-th/0409318] [INSPIRE].

  30. [30]

    S. Takeuchi, D-dependence of the gap between the critical temperatures in the one-dimensional gauge theories, Eur. Phys. J. C79 (2019) 548 [arXiv:1712.09261] [INSPIRE].

  31. [31]

    R. Delgadillo-Blando, D. O’Connor and B. Ydri, Geometry in Transition: A Model of Emergent Geometry, Phys. Rev. Lett.100 (2008) 201601 [arXiv:0712.3011] [INSPIRE].

  32. [32]

    R. Delgadillo-Blando, D. O’Connor and B. Ydri, Matrix Models, Gauge Theory and Emergent Geometry, arXiv:0806.0558 [INSPIRE].

  33. [33]

    M.S. Costa, L. Greenspan, J. Penedones and J. Santos, Thermodynamics of the BMN matrix model at strong coupling, JHEP03 (2015) 069 [arXiv:1411.5541] [INSPIRE].

  34. [34]

    R. Delgadillo-Blando and D. O’Connor, Matrix geometries and Matrix Models, JHEP11 (2012) 057 [arXiv:1203.6901] [INSPIRE].

  35. [35]

    M.E. Fisher and A.N. Berker, Scaling for first-order transitions in thermodynamic and finite systems, Phys. Rev. B26 (1982) 2507 [INSPIRE].

  36. [36]

    K. Binder and D.P. Landau, Finite-size scaling at first-order phase transitions, Phys. Rev. B30 (1984) 1477 [INSPIRE].

  37. [37]

    M.S.S. Challa, D.P. Landau and K. Binder, Finite size effects at temperature driven first order transitions, Phys. Rev. B34 (1986) 1841 [INSPIRE].

  38. [38]

    L. Glaser, D. O’Connor and S. Surya, Finite Size Scaling in 2d Causal Set Quantum Gravity, Class. Quant. Grav.35 (2018) 045006 [arXiv:1706.06432] [INSPIRE].

  39. [39]

    V.G. Filev and D. O’Connor, A Computer Test of Holographic Flavour Dynamics, JHEP05 (2016) 122 [arXiv:1512.02536] [INSPIRE].

  40. [40]

    Y. Asano, V.G. Filev, S. Kováčik and D. O’Connor, The flavoured BFSS model at high temperature, JHEP01 (2017) 113 [arXiv:1605.05597] [INSPIRE].

  41. [41]

    Y. Asano, V.G. Filev, S. Kováčik and D. O’Connor, A computer test of holographic avour dynamics. Part II, JHEP03 (2018) 055 [arXiv:1612.09281] [INSPIRE].

  42. [42]

    S. Kováčik, D. O’Connor and Y. Asano, The nonperturbative phase diagram of the bosonic BMN matrix model, arXiv:2004.05820 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information



Corresponding author

Correspondence to Yuhma Asano.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2001.03749

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asano, Y., Kováčik, S. & O’Connor, D. The confining transition in the bosonic BMN matrix model. J. High Energ. Phys. 2020, 174 (2020).

Download citation


  • Lattice Quantum Field Theory
  • M(atrix) Theories
  • Gauge-gravity correspondence