Supersymmetric protection and the Swampland


For certain terms in the action, supersymmetry can forbid an infinite number of possible contributions. We study whether such protection can occur in quantum gravity even without sufficient supersymmetry. We focus on whether the superpotential can vanish exactly in four-dimensional \( \mathcal{N} \) = 1 theories, and if the prepotential can be exactly cubic in \( \mathcal{N} \) = 2 theories. We investigate these questions in string theory and find that for almost all known string constructions the corrections allowed by supersymmetry do occur. However, we do find some special settings where all the corrections can be proven to vanish. These examples all share the common feature that they are related, through a certain orbifolding by a discrete gauged R-symmetry element, to a higher supersymmetric theory. Motivated by these results, we propose a Swampland criterion that any theory which enjoys such protection beyond its realised supersymmetry must have a direct connection to a higher supersymmetric theory.

A preprint version of the article is available at ArXiv.


  1. [1]

    C. Vafa, The String landscape and the swampland, hep-th/0509212 [INSPIRE].

  2. [2]

    T.D. Brennan, F. Carta and C. Vafa, The String Landscape, the Swampland and the Missing Corner, PoS(TASI2017)015 [arXiv:1711.00864] [INSPIRE].

  3. [3]

    E. Palti, The Swampland: Introduction and Review, Fortsch. Phys.67 (2019) 1900037 [arXiv:1903.06239] [INSPIRE].

  4. [4]

    E. Witten, Small instantons in string theory, Nucl. Phys. B460 (1996) 541 [hep-th/9511030] [INSPIRE].

  5. [5]

    M. Bianchi, S. Kovacs and G. Rossi, Instantons and Supersymmetry, Lect. Notes Phys.737 (2008) 303 [hep-th/0703142] [INSPIRE].

  6. [6]

    R. Blumenhagen, M. Cvetič, S. Kachru and T. Weigand, D-Brane Instantons in Type II Orientifolds, Ann. Rev. Nucl. Part. Sci.59 (2009) 269 [arXiv:0902.3251] [INSPIRE].

  7. [7]

    E. Witten, Nonperturbative superpotentials in string theory, Nucl. Phys. B474 (1996) 343 [hep-th/9604030] [INSPIRE].

  8. [8]

    M. Bianchi, A. Collinucci and L. Martucci, Magnetized E3-brane instantons in F-theory, JHEP12 (2011) 045 [arXiv:1107.3732] [INSPIRE].

  9. [9]

    M. Kerstan and T. Weigand, Fluxed M5-instantons in F-theory, Nucl. Phys. B864 (2012) 597 [arXiv:1205.4720] [INSPIRE].

  10. [10]

    T.W. Grimm, M. Kerstan, E. Palti and T. Weigand, On Fluxed Instantons and Moduli Stabilisation in IIB Orientifolds and F-theory, Phys. Rev. D84 (2011) 066001 [arXiv:1105.3193] [INSPIRE].

  11. [11]

    O.J. Ganor, A Note on zeros of superpotentials in F-theory, Nucl. Phys. B499 (1997) 55 [hep-th/9612077] [INSPIRE].

  12. [12]

    R. Blumenhagen, M. Cvetič and T. Weigand, Spacetime instanton corrections in 4D string vacua: The Seesaw mechanism for D-brane models, Nucl. Phys. B771 (2007) 113 [hep-th/0609191] [INSPIRE].

  13. [13]

    L.E. Ibáñez and A.M. Uranga, Neutrino Majorana Masses from String Theory Instanton Effects, JHEP03 (2007) 052 [hep-th/0609213] [INSPIRE].

  14. [14]

    B. Florea, S. Kachru, J. McGreevy and N. Saulina, Stringy Instantons and Quiver Gauge Theories, JHEP05 (2007) 024 [hep-th/0610003] [INSPIRE].

  15. [15]

    M. Haack, D. Krefl, D. Lüst, A. Van Proeyen and M. Zagermann, Gaugino Condensates and D-terms from D7-branes, JHEP01 (2007) 078 [hep-th/0609211] [INSPIRE].

  16. [16]

    A. Klemm, B. Lian, S.S. Roan and S.-T. Yau, Calabi-Yau fourfolds for M-theory and F-theory compactifications, Nucl. Phys. B518 (1998) 515 [hep-th/9701023] [INSPIRE].

  17. [17]

    R. Blumenhagen, A. Collinucci and B. Jurke, On Instanton Effects in F-theory, JHEP08 (2010) 079 [arXiv:1002.1894] [INSPIRE].

  18. [18]

    A. Grassi, Divisors on elliptic Calabi-Yau four folds and the superpotential in F-theory. 1., J. Geom. Phys.28 (1998) 289 [alg-geom/9704008] [INSPIRE].

  19. [19]

    A. Grassi, On minimal models of elliptic threefolds, Math. Ann.290 (1991) 287.

  20. [20]

    M. Cvetič, R. Richter and T. Weigand, Computation of D-brane instanton induced superpotential couplings: Majorana masses from string theory, Phys. Rev. D76 (2007) 086002 [hep-th/0703028] [INSPIRE].

  21. [21]

    S. Sethi, C. Vafa and E. Witten, Constraints on low dimensional string compactifications, Nucl. Phys. B480 (1996) 213 [hep-th/9606122] [INSPIRE].

  22. [22]

    J. Gray, A.S. Haupt and A. Lukas, All Complete Intersection Calabi-Yau Four-Folds, JHEP07 (2013) 070 [arXiv:1303.1832] [INSPIRE].

  23. [23]

    S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds, Nucl. Phys. B584 (2000) 69 [Erratum ibid.608 (2001) ] [hep-th/9906070] [INSPIRE].

  24. [24]

    R. Kallosh, A.-K. Kashani-Poor and A. Tomasiello, Counting fermionic zero modes on M5 with fluxes, JHEP06 (2005) 069 [hep-th/0503138] [INSPIRE].

  25. [25]

    M. Billó, L. Ferro, M. Frau, F. Fucito, A. Lerda and J.F. Morales, Flux interactions on D-branes and instantons, JHEP10 (2008) 112 [arXiv:0807.1666] [INSPIRE].

  26. [26]

    M. Bianchi, G. Inverso and L. Martucci, Brane instantons and fluxes in F-theory, JHEP07 (2013) 037 [arXiv:1212.0024] [INSPIRE].

  27. [27]

    F. Marchesano and L. Martucci, Non-perturbative effects on seven-brane Yukawa couplings, Phys. Rev. Lett.104 (2010) 231601 [arXiv:0910.5496] [INSPIRE].

  28. [28]

    R. Donagi, A. Grassi and E. Witten, A Nonperturbative superpotential with E8symmetry, Mod. Phys. Lett. A11 (1996) 2199 [hep-th/9607091] [INSPIRE].

  29. [29]

    G. Curio and D. Lüst, A Class of N = 1 dual string pairs and its modular superpotential, Int. J. Mod. Phys. A12 (1997) 5847 [hep-th/9703007] [INSPIRE].

  30. [30]

    A.P. Braun, M. Del Zotto, J. Halverson, M. Larfors, D.R. Morrison and S. Schäfer-Nameki, Infinitely many M2-instanton corrections to M-theory on G2-manifolds, JHEP09 (2018) 077 [arXiv:1803.02343] [INSPIRE].

  31. [31]

    J. Distler, Resurrecting (2, 0) compactifications, Phys. Lett. B188 (1987) 431 [INSPIRE].

  32. [32]

    E. Silverstein and E. Witten, Criteria for conformal invariance of (0, 2) models, Nucl. Phys. B444 (1995) 161 [hep-th/9503212] [INSPIRE].

  33. [33]

    C. Beasley and E. Witten, Residues and world sheet instantons, JHEP10 (2003) 065 [hep-th/0304115] [INSPIRE].

  34. [34]

    E.I. Buchbinder and B.A. Ovrut, Non-vanishing Superpotentials in Heterotic String Theory and Discrete Torsion, JHEP01 (2017) 038 [arXiv:1611.01922] [INSPIRE].

  35. [35]

    E. Buchbinder, A. Lukas, B. Ovrut and F. Ruehle, Heterotic Instanton Superpotentials from Complete Intersection Calabi-Yau Manifolds, JHEP10 (2017) 032 [arXiv:1707.07214] [INSPIRE].

  36. [36]

    E.I. Buchbinder, A. Lukas, B.A. Ovrut and F. Ruehle, Heterotic Instantons for Monad and Extension Bundles, JHEP02 (2020) 081 [arXiv:1912.07222] [INSPIRE].

  37. [37]

    E.I. Buchbinder, A. Lukas, B.A. Ovrut and F. Ruehle, Instantons and Hilbert Functions, arXiv:1912.08358 [INSPIRE].

  38. [38]

    L. Kamenova and C. Vafa, Kobayashi non-hyperbolicity of Calabi-Yau manifolds via mirror symmetry, arXiv:1908.08573.

  39. [39]

    M. Billó, M. Frau, I. Pesando, F. Fucito, A. Lerda and A. Liccardo, Classical gauge instantons from open strings, JHEP02 (2003) 045 [hep-th/0211250] [INSPIRE].

  40. [40]

    N. Akerblom, R. Blumenhagen, D. Lüst and M. Schmidt-Sommerfeld, Instantons and Holomorphic Couplings in Intersecting D-brane Models, JHEP08 (2007) 044 [arXiv:0705.2366] [INSPIRE].

  41. [41]

    M. Aganagic, C. Beem and S. Kachru, Geometric transitions and dynamical SUSY breaking, Nucl. Phys. B796 (2008) 1 [arXiv:0709.4277] [INSPIRE].

  42. [42]

    C. Petersson, Superpotentials From Stringy Instantons Without Orientifolds, JHEP05 (2008) 078 [arXiv:0711.1837] [INSPIRE].

  43. [43]

    R. Argurio, M. Bertolini, S. Franco and S. Kachru, Meta-stable vacua and D-branes at the conifold, JHEP06 (2007) 017 [hep-th/0703236] [INSPIRE].

  44. [44]

    R. Argurio, M. Bertolini, G. Ferretti, A. Lerda and C. Petersson, Stringy instantons at orbifold singularities, JHEP06 (2007) 067 [arXiv:0704.0262] [INSPIRE].

  45. [45]

    M. Bianchi, F. Fucito and J.F. Morales, D-brane instantons on the T6/Z(3) orientifold, JHEP07 (2007) 038 [arXiv:0704.0784] [INSPIRE].

  46. [46]

    L.E. Ibáñez, A.N. Schellekens and A.M. Uranga, Instanton Induced Neutrino Majorana Masses in CFT Orientifolds with MSSM-like spectra, JHEP06 (2007) 011 [arXiv:0704.1079] [INSPIRE].

  47. [47]

    R. Blumenhagen, M. Cvetič, R. Richter and T. Weigand, Lifting D-Instanton Zero Modes by Recombination and Background Fluxes, JHEP10 (2007) 098 [arXiv:0708.0403] [INSPIRE].

  48. [48]

    I. Garcia-Etxebarria and A.M. Uranga, Non-perturbative superpotentials across lines of marginal stability, JHEP01 (2008) 033 [arXiv:0711.1430] [INSPIRE].

  49. [49]

    I. Garcia-Etxebarria, F. Marchesano and A.M. Uranga, Non-perturbative F-terms across lines of BPS stability, JHEP07 (2008) 028 [arXiv:0805.0713] [INSPIRE].

  50. [50]

    M. Cvetič, I. Garcia-Etxebarria and R. Richter, Branes and instantons at angles and the F-theory lift of O (1) instantons, AIP Conf. Proc.1200 (2010) 246 [arXiv:0911.0012] [INSPIRE].

  51. [51]

    M. Cvetič, I. Garcia Etxebarria and J. Halverson, Three Looks at Instantons in F-theory — New Insights from Anomaly Inflow, String Junctions and Heterotic Duality, JHEP11 (2011) 101 [arXiv:1107.2388] [INSPIRE].

  52. [52]

    V. Braun, On Free Quotients of Complete Intersection Calabi-Yau Manifolds, JHEP04 (2011) 005 [arXiv:1003.3235] [INSPIRE].

  53. [53]

    C. Beasley and E. Witten, New instanton effects in supersymmetric QCD, JHEP01 (2005) 056 [hep-th/0409149] [INSPIRE].

  54. [54]

    C. Beasley and E. Witten, New instanton effects in string theory, JHEP02 (2006) 060 [hep-th/0512039] [INSPIRE].

  55. [55]

    P.G. Camara, L.E. Ibáñez and F. Marchesano, RR photons, JHEP09 (2011) 110 [arXiv:1106.0060] [INSPIRE].

  56. [56]

    C. Mayrhofer, E. Palti, O. Till and T. Weigand, On Discrete Symmetries and Torsion Homology in F-theory, JHEP06 (2015) 029 [arXiv:1410.7814] [INSPIRE].

  57. [57]

    R. Donagi and K. Wendland, On orbifolds and free fermion constructions, J. Geom. Phys.59 (2009) 942 [arXiv:0809.0330] [INSPIRE].

  58. [58]

    C. Vafa and E. Witten, On orbifolds with discrete torsion, J. Geom. Phys.15 (1995) 189 [hep-th/9409188] [INSPIRE].

  59. [59]

    C. Angelantonj, I. Antoniadis, G. D’Appollonio, E. Dudas and A. Sagnotti, Type I vacua with brane supersymmetry breaking, Nucl. Phys. B572 (2000) 36 [hep-th/9911081] [INSPIRE].

  60. [60]

    R. Blumenhagen, D. Lüst and T.R. Taylor, Moduli stabilization in chiral type IIB orientifold models with fluxes, Nucl. Phys. B663 (2003) 319 [hep-th/0303016] [INSPIRE].

  61. [61]

    J.P. Conlon and L.T. Witkowski, Scattering and Sequestering of Blow-Up Moduli in Local String Models, JHEP12 (2011) 028 [arXiv:1109.4153] [INSPIRE].

  62. [62]

    D. Friedan, E.J. Martinec and S.H. Shenker, Conformal Invariance, Supersymmetry and String Theory, Nucl. Phys. B271 (1986) 93 [INSPIRE].

  63. [63]

    J.P. Conlon, M. Goodsell and E. Palti, Anomaly Mediation in Superstring Theory, Fortsch. Phys.59 (2011) 5 [arXiv:1008.4361] [INSPIRE].

  64. [64]

    F. Denef, M.R. Douglas, B. Florea, A. Grassi and S. Kachru, Fixing all moduli in a simple F-theory compactification, Adv. Theor. Math. Phys.9 (2005) 861 [hep-th/0503124] [INSPIRE].

  65. [65]

    D. Lüst, S. Reffert, W. Schulgin and S. Stieberger, Moduli stabilization in type IIB orientifolds (I): Orbifold limits, Nucl. Phys. B766 (2007) 68 [hep-th/0506090] [INSPIRE].

  66. [66]

    R. Blumenhagen, M. Cvetič, F. Marchesano and G. Shiu, Chiral D-brane models with frozen open string moduli, JHEP03 (2005) 050 [hep-th/0502095] [INSPIRE].

  67. [67]

    D. Lüst, S. Reffert, E. Scheidegger, W. Schulgin and S. Stieberger, Moduli Stabilization in Type IIB Orientifolds (II), Nucl. Phys. B766 (2007) 178 [hep-th/0609013] [INSPIRE].

  68. [68]

    M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys.165 (1994) 311 [hep-th/9309140] [INSPIRE].

  69. [69]

    S. Ferrara, J.A. Harvey, A. Strominger and C. Vafa, Second quantized mirror symmetry, Phys. Lett. B361 (1995) 59 [hep-th/9505162] [INSPIRE].

  70. [70]

    A. Klemm and M. Mariño, Counting BPS states on the enriques Calabi-Yau, Commun. Math. Phys.280 (2008) 27 [hep-th/0512227] [INSPIRE].

  71. [71]

    A.-K. Kashani-Poor, R. Minasian and H. Triendl, Enhanced supersymmetry from vanishing Euler number, JHEP04 (2013) 058 [arXiv:1301.5031] [INSPIRE].

  72. [72]

    B. Haghighat, S. Murthy, C. Vafa and S. Vandoren, F-Theory, Spinning Black Holes and Multi-string Branches, JHEP01 (2016) 009 [arXiv:1509.00455] [INSPIRE].

  73. [73]

    C. Lawrie, S. Schäfer-Nameki and T. Weigand, Chiral 2d theories from N = 4 SYM with varying coupling, JHEP04 (2017) 111 [arXiv:1612.05640] [INSPIRE].

  74. [74]

    P.H. Ginsparg, Applied conformal field theory, in Les Houches Summer School in Theoretical Physics: Fields, Strings, Critical Phenomena, Les Houches France (1988), pg. 1 [hep-th/9108028] [INSPIRE].

  75. [75]

    S. Hamidi and C. Vafa, Interactions on Orbifolds, Nucl. Phys. B279 (1987) 465 [INSPIRE].

  76. [76]

    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The String landscape, black holes and gravity as the weakest force, JHEP06 (2007) 060 [hep-th/0601001] [INSPIRE].

  77. [77]

    B. Heidenreich, M. Reece and T. Rudelius, Sharpening the Weak Gravity Conjecture with Dimensional Reduction, JHEP02 (2016) 140 [arXiv:1509.06374] [INSPIRE].

  78. [78]

    E. Palti, The Weak Gravity Conjecture and Scalar Fields, JHEP08 (2017) 034 [arXiv:1705.04328] [INSPIRE].

  79. [79]

    S.-J. Lee, W. Lerche and T. Weigand, A Stringy Test of the Scalar Weak Gravity Conjecture, Nucl. Phys. B938 (2019) 321 [arXiv:1810.05169] [INSPIRE].

  80. [80]

    H. Ooguri and C. Vafa, Non-supersymmetric AdS and the Swampland, Adv. Theor. Math. Phys.21 (2017) 1787 [arXiv:1610.01533] [INSPIRE].

  81. [81]

    S. Cecotti, Special Geometry and the Swampland, to appear.

  82. [82]

    A. Sen, Orientifold limit of F-theory vacua, Phys. Rev. D55 (1997) 7345 [hep-th/9702165] [INSPIRE].

  83. [83]

    D.R. Morrison and W. Taylor, Sections, multisections and U(1) fields in F-theory, arXiv:1404.1527 [INSPIRE].

  84. [84]

    C. Mayrhofer, E. Palti, O. Till and T. Weigand, Discrete Gauge Symmetries by Higgsing in four-dimensional F-theory Compactifications, JHEP12 (2014) 068 [arXiv:1408.6831] [INSPIRE].

  85. [85]

    R. Friedman, J. Morgan and E. Witten, Vector bundles and F-theory, Commun. Math. Phys.187 (1997) 679 [hep-th/9701162] [INSPIRE].

  86. [86]

    L.B. Anderson and W. Taylor, Geometric constraints in dual F-theory and heterotic string compactifications, JHEP08 (2014) 025 [arXiv:1405.2074] [INSPIRE].

  87. [87]

    L.B. Anderson, F. Apruzzi, X. Gao, J. Gray and S.-J. Lee, Instanton superpotentials, Calabi-Yau geometry and fibrations, Phys. Rev. D93 (2016) 086001 [arXiv:1511.05188] [INSPIRE].

  88. [88]

    P.G. Camara, E. Dudas, T. Maillard and G. Pradisi, String instantons, fluxes and moduli stabilization, Nucl. Phys. B795 (2008) 453 [arXiv:0710.3080] [INSPIRE].

  89. [89]

    P.G. Camara and E. Dudas, Multi-instanton and string loop corrections in toroidal orbifold models, JHEP08 (2008) 069 [arXiv:0806.3102] [INSPIRE].

  90. [90]

    P.G. Camara, C. Condeescu, E. Dudas and M. Lennek, Non-perturbative Vacuum Destabilization and D-brane Dynamics, JHEP06 (2010) 062 [arXiv:1003.5805] [INSPIRE].

  91. [91]

    M. Bertolini and M.R. Plesser, Worldsheet instantons and (0, 2) linear models, JHEP08 (2015) 081 [arXiv:1410.4541] [INSPIRE].

  92. [92]

    E. Witten, More On Superstring Perturbation Theory: An Overview Of Superstring Perturbation Theory Via Super Riemann Surfaces, arXiv:1304.2832 [INSPIRE].

  93. [93]

    J.J. Atick, L.J. Dixon and A. Sen, String Calculation of Fayet-Iliopoulos d Terms in Arbitrary Supersymmetric Compactifications, Nucl. Phys. B292 (1987) 109 [INSPIRE].

  94. [94]

    G. Aldazabal and L.E. Ibáñez, A Note on 4D Heterotic String Vacua, FI-terms and the Swampland, Phys. Lett. B782 (2018) 375 [arXiv:1804.07322] [INSPIRE].

  95. [95]

    R. Pius, A. Rudra and A. Sen, String Perturbation Theory Around Dynamically Shifted Vacuum, JHEP10 (2014) 070 [arXiv:1404.6254] [INSPIRE].

  96. [96]

    A. Sen, Supersymmetry Restoration in Superstring Perturbation Theory, JHEP12 (2015) 075 [arXiv:1508.02481] [INSPIRE].

  97. [97]

    L.B. Anderson, X. Gao, J. Gray and S.-J. Lee, Fibrations in CICY Threefolds, JHEP10 (2017) 077 [arXiv:1708.07907] [INSPIRE].

  98. [98]

    L.B. Anderson, J. Gray, A. Lukas and E. Palti, Two Hundred Heterotic Standard Models on Smooth Calabi-Yau Threefolds, Phys. Rev. D84 (2011) 106005 [arXiv:1106.4804] [INSPIRE].

  99. [99]

    L.B. Anderson, J. Gray, A. Lukas and E. Palti, Heterotic Line Bundle Standard Models, JHEP06 (2012) 113 [arXiv:1202.1757] [INSPIRE].

  100. [100]

    L.B. Anderson, A. Constantin, J. Gray, A. Lukas and E. Palti, A Comprehensive Scan for Heterotic SU(5) GUT models, JHEP01 (2014) 047 [arXiv:1307.4787] [INSPIRE].

  101. [101]

    S. Groot Nibbelink, O. Loukas, F. Ruehle and P.K.S. Vaudrevange, Infinite number of MSSMs from heterotic line bundles?, Phys. Rev. D92 (2015) 046002 [arXiv:1506.00879] [INSPIRE].

  102. [102]

    R. Blumenhagen, G. Honecker and T. Weigand, Loop-corrected compactifications of the heterotic string with line bundles, JHEP06 (2005) 020 [hep-th/0504232] [INSPIRE].

  103. [103]

    L.B. Anderson, Y.-H. He and A. Lukas, Heterotic Compactification, An Algorithmic Approach, JHEP07 (2007) 049 [hep-th/0702210] [INSPIRE].

  104. [104]

    G. Papadopoulos and P.K. Townsend, Compactification of D = 11 supergravity on spaces of exceptional holonomy, Phys. Lett. B357 (1995) 300 [hep-th/9506150] [INSPIRE].

  105. [105]

    J.A. Harvey and G.W. Moore, Superpotentials and membrane instantons, hep-th/9907026 [INSPIRE].

  106. [106]

    B.S. Acharya, M theory, Joyce orbifolds and superYang-Mills, Adv. Theor. Math. Phys.3 (1999) 227 [hep-th/9812205] [INSPIRE].

  107. [107]

    A. Kovalev, Twisted connected sums and special Riemannian holonomy, J. Reine Angew. Math.565 (2003) 125 [math/0012189].

  108. [108]

    A. Kovalev and N.-H. Lee, K3 surfaces with non-symplectic involution and compact irreducible G2-manifolds, Math. Proc. Camb. Philos. Soc.151 (2011) 193.

  109. [109]

    A. Corti, M. Haskins, J. Nordstrom and T. Pacini, Asymptotically cylindrical Calabi-Yau 3-folds from weak fano 3-folds, Geom. Topol.17 (2013) 1955 [arXiv:1206.2277].

  110. [110]

    D.D. Joyce, Compact Riemannian 7-manifolds with holonomy G2. II, J. Diff. Geom.43 (1996) 329.

  111. [111]

    A. Corti, M. Haskins, J. Nordstrom and T. Pacini, G2-manifolds and associative submanifolds via semi-fano 3-folds, Duke Math. J.164 (2015) 1971.

  112. [112]

    G. Menet, J. Nordstrom and H. Sá Earp, Construction of G2-instantons via twisted connected sums, arXiv:1510.03836 [INSPIRE].

  113. [113]

    H. Sá Earp and T. Walpuski, G2-instantons over twisted connected sums, Geom. Topol.19 (2015) 1263.

  114. [114]

    H. Sá Earp, G2-instantons over asymptotically cylindrical manifolds, Geom. Topol.19 (2015) 61.

  115. [115]

    T. Walpuski, G2-instantons on generalised kummer constructions, Geom. Topol.17 (2013) 2345.

  116. [116]

    T. Walpuski, G2-instantons over twisted connected sums: An example, Math. Res. Lett.23 (2016) 529 [arXiv:1505.01080].

  117. [117]

    T. Walpuski, G2-instantons, associative submanifolds and fueter sections, Commun. Anal. Geom.25 (2017) 847 [arXiv:1205.5350].

  118. [118]

    D. Joyce, Conjectures on counting associative 3-folds in g2-manifolds, in Modern Geometry: A Celebration of the Work of Simon Donaldson, AMS Press, Providence U.S.A. (2018), pg. 97 [arXiv:1610.09836].

  119. [119]

    J. Halverson and D.R. Morrison, On gauge enhancement and singular limits in G2compactifications of M-theory, JHEP04 (2016) 100 [arXiv:1507.05965] [INSPIRE].

  120. [120]

    A.P. Braun and S. Schäfer-Nameki, Compact, Singular G2-Holonomy Manifolds and M/Heterotic/F-Theory Duality, JHEP04 (2018) 126 [arXiv:1708.07215] [INSPIRE].

  121. [121]

    B.S. Acharya, A.P. Braun, E.E. Svanes and R. Valandro, Counting associatives in compact G2orbifolds, JHEP03 (2019) 138 [arXiv:1812.04008] [INSPIRE].

  122. [122]

    A.P. Braun, M-Theory and Orientifolds, arXiv:1912.06072 [INSPIRE].

  123. [123]

    O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Enumerating flux vacua with enhanced symmetries, JHEP02 (2005) 037 [hep-th/0411061] [INSPIRE].

  124. [124]

    M. Dine and Z. Sun, R symmetries in the landscape, JHEP01 (2006) 129 [hep-th/0506246] [INSPIRE].

  125. [125]

    E. Palti, Low Energy Supersymmetry from Non-Geometry, JHEP10 (2007) 011 [arXiv:0707.1595] [INSPIRE].

  126. [126]

    A.-K. Kashani-Poor and A. Tomasiello, A stringy test of flux-induced isometry gauging, Nucl. Phys. B728 (2005) 135 [hep-th/0505208] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information



Corresponding author

Correspondence to Eran Palti.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2003.10452

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Palti, E., Vafa, C. & Weigand, T. Supersymmetric protection and the Swampland. J. High Energ. Phys. 2020, 168 (2020).

Download citation


  • F-Theory
  • Nonperturbative Effects
  • Superstring Vacua
  • Supersymmetric Effective Theories