Dark Matter in scalar Sp(\( \mathcal{N} \)) gauge dynamics

Abstract

We consider a model with Sp dark gauge group and a scalar field in the fundamental representation, which leads to two co-stable DM candidates at the perturbative level thanks to a global U(1) accidental symmetry. After gauge confinement at low energy scale, only one of the two candidates is still stable. We compute the DM relic abundance by solving the Boltzmann equations numerically. The presence of light dark glueballs gives extra cosmological effects and can affect Higgs physics. We study the DM phenomenology, providing the predictions for direct and indirect detection (including the Sommerfeld enhancement). We show that the model predicts a slightly suppressed indirect detection cross section in comparison to the usual WIMPs paradigm.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    D. Buttazzo et al., Dark matter from self-dual gauge/Higgs dynamics, JHEP10 (2019) 067 [arXiv:1907.11228] [INSPIRE].

  2. [2]

    D. Buttazzo et al., Scalar gauge dynamics and dark matter, JHEP01 (2020) 130 [arXiv:1911.04502] [INSPIRE].

  3. [3]

    T. Hambye and M.H.G. Tytgat, Confined hidden vector dark matter, Phys. Lett. B683 (2010) 39 [arXiv:0907.1007] [INSPIRE].

  4. [4]

    A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Cosmological implications of dark matter bound states, JCAP05 (2017) 006 [arXiv:1702.01141] [INSPIRE].

  5. [5]

    R. Oncala and K. Petraki, Dark matter bound states via emission of scalar mediators, JHEP01 (2019) 070 [arXiv:1808.04854] [INSPIRE].

  6. [6]

    CTA Consortium collaboration, The dark matter programme of the Cherenkov telescope array, PoS(ICRC2017)921 [arXiv:1709.01483] [INSPIRE].

  7. [7]

    T. Hambye and A. Strumia, Dynamical generation of the weak and Dark Matter scale, Phys. Rev. D88 (2013) 055022 [arXiv:1306.2329] [INSPIRE].

  8. [8]

    T. Hambye, Hidden vector dark matter, JHEP01 (2009) 028 [arXiv:0811.0172] [INSPIRE].

  9. [9]

    E. Witten, Current algebra, baryons and quark confinement, Nucl. Phys. B223 (1983) 433 [INSPIRE].

  10. [10]

    A. Sommerfeld, Über die Beugung und Bremsung der Elektronen, Ann. Phys.403 (1931) 257.

  11. [11]

    A.D. Sakharov, Interaction of an electron and positron in pair production, Sov. Phys. Usp.34 (1991) 375 [INSPIRE].

  12. [12]

    J. Hisano et al., Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B646 (2007) 34 [hep-ph/0610249] [INSPIRE].

  13. [13]

    M. Cirelli, A. Strumia and M. Tamburini, Cosmology and astrophysics of minimal dark matter, Nucl. Phys. B787 (2007) 152 [arXiv:0706.4071] [INSPIRE].

  14. [14]

    K.M. Belotsky, M. Khlopov, S.V. Legonkov and K.I. Shibaev, Effects of new long-range interaction: recombination of relic heavy neutrinos and antineutrinos, astro-ph/0504621 [INSPIRE].

  15. [15]

    M.B. Wise and Y. Zhang, Stable bound states of asymmetric dark matter, Phys. Rev. D90 (2014) 055030 [Erratum ibid.91 (2015) 039907] [arXiv:1407.4121] [INSPIRE].

  16. [16]

    B. von Harling and K. Petraki, Bound-state formation for thermal relic dark matter and unitarity, JCAP12 (2014) 033 [arXiv:1407.7874] [INSPIRE].

  17. [17]

    K. Petraki, M. Postma and M. Wiechers, Dark-matter bound states from Feynman diagrams, JHEP06 (2015) 128 [arXiv:1505.00109] [INSPIRE].

  18. [18]

    J. Ellis, F. Luo and K.A. Olive, Gluino coannihilation revisited, JHEP09 (2015) 127 [arXiv:1503.07142] [INSPIRE].

  19. [19]

    P. Asadi et al., Capture and decay of electroweak WIMPonium, JCAP02 (2017) 005 [arXiv:1610.07617] [INSPIRE].

  20. [20]

    S.P. Liew and F. Luo, Effects of QCD bound states on dark matter relic abundance, JHEP02 (2017) 091 [arXiv:1611.08133] [INSPIRE].

  21. [21]

    M. Cirelli et al., Dark matter’s secret liaisons: phenomenology of a dark U(1) sector with bound states, JCAP05 (2017) 036 [arXiv:1612.07295] [INSPIRE].

  22. [22]

    C.J. Morningstar and M.J. Peardon, The glueball spectrum from an anisotropic lattice study, Phys. Rev. D60 (1999) 034509 [hep-lat/9901004] [INSPIRE].

  23. [23]

    A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Dark matter as a weakly coupled Dark Baryon, JHEP10 (2017) 210 [arXiv:1707.05380] [INSPIRE].

  24. [24]

    S. Alekhin et al., A facility to search for hidden particles at the CERN SPS: the SHiP physics case, Rept. Prog. Phys.79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].

  25. [25]

    XENON collaboration, Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett.121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].

  26. [26]

    Fermi-LAT collaboration, Searching for dark matter annihilation from Milky Way dwarf spheroidal galaxies with six years of Fermi Large Area Telescope data, Phys. Rev. Lett.115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].

  27. [27]

    H.E.S.S. collaboration, Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S., Phys. Rev. Lett.117 (2016) 111301 [arXiv:1607.08142] [INSPIRE].

  28. [28]

    D. Buttazzo, F. Sala and A. Tesi, Singlet-like Higgs bosons at present and future colliders, JHEP11 (2015) 158 [arXiv:1505.05488] [INSPIRE].

  29. [29]

    D. Buttazzo, D. Redigolo, F. Sala and A. Tesi, Fusing vectors into scalars at high energy lepton colliders, JHEP11 (2018) 144 [arXiv:1807.04743] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jin-Wei Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2004.03299

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Landini, G., Wang, J. Dark Matter in scalar Sp(\( \mathcal{N} \)) gauge dynamics. J. High Energ. Phys. 2020, 167 (2020). https://doi.org/10.1007/JHEP06(2020)167

Download citation

Keywords

  • Beyond Standard Model
  • Gauge Symmetry
  • Cosmology of Theories beyond the SM