Quiver gauge theories: beyond reflexivity

Abstract

Reflexive polygons have been extensively studied in a variety of contexts in mathematics and physics. We generalize this programme by looking at the 45 different lattice polygons with two interior points up to SL(2,ℤ) equivalence. Each corresponds to some affine toric 3-fold as a cone over a Sasaki-Einstein 5-fold. We study the quiver gauge theories of D3-branes probing these cones, which coincide with the mesonic moduli space. The minimum of the volume function of the Sasaki-Einstein base manifold plays an important role in computing the R-charges. We analyze these minimized volumes with respect to the topological quantities of the compact surfaces constructed from the polygons. Unlike reflexive polytopes, one can have two fans from the two interior points, and hence give rise to two smooth varieties after complete resolutions, leading to an interesting pair of closely related geometries and gauge theories.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    B. Feng, A. Hanany and Y.-H. He, D-brane gauge theories from toric singularities and toric duality, Nucl. Phys. B595 (2001) 165 [hep-th/0003085] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  2. [2]

    B. Feng, Y.-H. He and F. Lam, On correspondences between toric singularities and (p, q) webs, Nucl. Phys. B701 (2004) 334 [hep-th/0403133] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  3. [3]

    D.R. Gulotta, Properly ordered dimers, R-charges and an efficient inverse algorithm, JHEP10 (2008) 014 [arXiv:0807.3012] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  4. [4]

    B. Feng, A. Hanany, Y.-H. He and A.M. Uranga, Toric duality as Seiberg duality and brane diamonds, JHEP12 (2001) 035 [hep-th/0109063] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  5. [5]

    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  6. [6]

    B.S. Acharya, J.M. Figueroa-O’Farrill, C.M. Hull and B.J. Spence, Branes at conical singularities and holography, Adv. Theor. Math. Phys.2 (1999) 1249 [hep-th/9808014] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  7. [7]

    D.R. Morrison and M. Plesser, Nonspherical horizons. 1, Adv. Theor. Math. Phys.3 (1999) 1 [hep-th/9810201] [INSPIRE].

  8. [8]

    A. Hanany and K.D. Kennaway, Dimer models and toric diagrams, hep-th/0503149 [INSPIRE].

  9. [9]

    S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver gauge theories, JHEP01 (2006) 096 [hep-th/0504110] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  10. [10]

    B. Feng, Y.-H. He, K.D. Kennaway and C. Vafa, Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys.12 (2008) 489 [hep-th/0511287] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  11. [11]

    R. Kenyon, Local statistics of lattice dimers, Ann. Inst. H. PoincaréB 33 (1997) 591 [math.CO/0105054].

  12. [12]

    R. Kenyon, An introduction to the dimer model, math.CO/0310326.

  13. [13]

    Y.-H. He, R.-K. Seong and S.-T. Yau, Calabi-Yau volumes and reflexive polytopes, Commun. Math. Phys.361 (2018) 155 [arXiv:1704.03462] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  14. [14]

    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP10 (2008) 091 [arXiv:0806.1218] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  15. [15]

    J. Bagger and N. Lambert, Modeling multiple M2’s, Phys. Rev. D75 (2007) 045020 [hep-th/0611108] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  16. [16]

    A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B811 (2009) 66 [arXiv:0709.1260] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  17. [17]

    A. Hanany and A. Zaffaroni, Tilings, Chern-Simons theories and M2 branes, JHEP10 (2008) 111 [arXiv:0808.1244] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  18. [18]

    A. Hanany, D. Vegh and A. Zaffaroni, Brane tilings and M2 branes, JHEP03 (2009) 012 [arXiv:0809.1440] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  19. [19]

    S. Franco, D. Ghim, S. Lee, R.-K. Seong and D. Yokoyama, 2d (0, 2) quiver gauge theories and D-branes, JHEP09 (2015) 072 [arXiv:1506.03818] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  20. [20]

    S. Franco, S. Lee and R.-K. Seong, Brane brick models, toric Calabi-Yau 4-folds and 2d (0, 2) quivers, JHEP02 (2016) 047 [arXiv:1510.01744] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  21. [21]

    S. Franco, S. Lee, R.-K. Seong and C. Vafa, Brane brick models in the mirror, JHEP02 (2017) 106 [arXiv:1609.01723] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  22. [22]

    S. Franco, S. Lee and R.-K. Seong, Brane brick models and 2d (0, 2) triality, JHEP05 (2016) 020 [arXiv:1602.01834] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    A. Gadde, S. Gukov and P. Putrov, (0, 2) trialities, JHEP03 (2014) 076 [arXiv:1310.0818] [INSPIRE].

  24. [24]

    S. Franco, S. Lee, R.-K. Seong and C. Vafa, Quadrality for supersymmetric matrix models, JHEP07 (2017) 053 [arXiv:1612.06859] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  25. [25]

    A. Hanany and R.-K. Seong, Brane tilings and reflexive polygons, Fortsch. Phys.60 (2012) 695 [arXiv:1201.2614] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  26. [26]

    A. Hanany and R.-K. Seong, Brane tilings and specular duality, JHEP08 (2012) 107 [arXiv:1206.2386] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  27. [27]

    X. Wei and R. Ding, Lattice polygons with two interior lattice points, Math. Notes91 (2012) 868.

    MathSciNet  MATH  Google Scholar 

  28. [28]

    J. Park, R. Rabadán and A.M. Uranga, Orientifolding the conifold, Nucl. Phys. B570 (2000) 38 [hep-th/9907086] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  29. [29]

    A.M. Uranga, Brane configurations for branes at conifolds, JHEP01 (1999) 022 [hep-th/9811004] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  30. [30]

    J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS5solutions of M-theory, Class. Quant. Grav.21 (2004) 4335 [hep-th/0402153] [INSPIRE].

    ADS  MATH  Google Scholar 

  31. [31]

    J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Sasaki-Einstein metrics on S2× S3 , Adv. Theor. Math. Phys.8 (2004) 711 [hep-th/0403002] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  32. [32]

    S. Benvenuti, S. Franco, A. Hanany, D. Martelli and J. Sparks, An infinite family of superconformal quiver gauge theories with Sasaki-Einstein duals, JHEP06 (2005) 064 [hep-th/0411264] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  33. [33]

    S. Benvenuti, A. Hanany and P. Kazakopoulos, The toric phases of the Yp,qquivers, JHEP07 (2005) 021 [hep-th/0412279] [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh and B. Wecht, Gauge theories from toric geometry and brane tilings, JHEP01 (2006) 128 [hep-th/0505211] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  35. [35]

    A. Hanany, P. Kazakopoulos and B. Wecht, A new infinite class of quiver gauge theories, JHEP08 (2005) 054 [hep-th/0503177] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  36. [36]

    B. Feng, A. Hanany and Y.-H. He, Phase structure of D-brane gauge theories and toric duality, JHEP08 (2001) 040 [hep-th/0104259] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  37. [37]

    B. Feng, S. Franco, A. Hanany and Y.-H. He, UnHiggsing the del Pezzo, JHEP08 (2003) 058 [hep-th/0209228] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  38. [38]

    B. Feng, S. Franco, A. Hanany and Y.-H. He, Symmetries of toric duality, JHEP12 (2002) 076 [hep-th/0205144] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  39. [39]

    A. Hanany and R.-K. Seong, Symmetries of Abelian orbifolds, JHEP01 (2011) 027 [arXiv:1009.3017] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  40. [40]

    J. Davey, A. Hanany and R.-K. Seong, Counting orbifolds, JHEP06 (2010) 010 [arXiv:1002.3609] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  41. [41]

    J. Davey, A. Hanany and J. Pasukonis, On the classification of brane tilings, JHEP01 (2010) 078 [arXiv:0909.2868] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  42. [42]

    S. Franco, Y.-H. He, C. Sun and Y. Xiao, A comprehensive survey of brane tilings, Int. J. Mod. Phys. A32 (2017) 1750142 [arXiv:1702.03958] [INSPIRE].

    ADS  MATH  Google Scholar 

  43. [43]

    C. Closset, M. Del Zotto and V. Saxena, Five-dimensional SCFTs and gauge theory phases: an M-theory/type IIA perspective, SciPost Phys.6 (2019) 052 [arXiv:1812.10451] [INSPIRE].

    ADS  Google Scholar 

  44. [44]

    C. Closset and M. Del Zotto, On 5d SCFTs and their BPS quivers. Part I: B-branes and brane tilings, arXiv:1912.13502 [INSPIRE].

  45. [45]

    V. Saxena, Rank-two 5d SCFTs from M-theory at isolated toric singularities: a systematic study, JHEP20 (2020) 198 [arXiv:1911.09574] [INSPIRE].

    Google Scholar 

  46. [46]

    W. Fulton, Introduction to toric varieties, Annals of mathematics studies, Princeton University Press, Princeton, NJ, U.S.A. (1993).

    Google Scholar 

  47. [47]

    D. Cox, J. Little and H. Schenck, Toric varieties, Graduate studies in mathematics, American Mathematical Soc., U.S.A. (2011).

    Google Scholar 

  48. [48]

    G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett.13 (1964) 585 [INSPIRE].

    ADS  Google Scholar 

  49. [49]

    P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett.13 (1964) 508 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  50. [50]

    F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett.13 (1964) 321 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  51. [51]

    M. Yamazaki, Brane tilings and their applications, Fortsch. Phys.56 (2008) 555 [arXiv:0803.4474] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  52. [52]

    J. Bao, Y.-H. He, E. Hirst and S. Pietromonaco, Lectures on the Calabi-Yau landscape, arXiv:2001.01212 [INSPIRE].

  53. [53]

    E. Witten, Phases of N = 2 theories in two-dimensions, AMS/IP Stud. Adv. Math.1 (1996) 143 [hep-th/9301042] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  54. [54]

    N. Seiberg, Electric-magnetic duality in supersymmetric non-Abelian gauge theories, Nucl. Phys. B435 (1995) 129 [hep-th/9411149] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  55. [55]

    C.E. Beasley and M. Plesser, Toric duality is Seiberg duality, JHEP12 (2001) 001 [hep-th/0109053] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  56. [56]

    G. Musiker and C. Stump, A compendium on the cluster algebra and quiver package in sage, arXiv:1102.4844.

  57. [57]

    A. Hanany, Y.-H. He, V. Jejjala, J. Pasukonis, S. Ramgoolam and D. Rodriguez-Gomez, Invariants of toric Seiberg duality, Int. J. Mod. Phys. A27 (2012) 1250002 [arXiv:1107.4101] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  58. [58]

    S. Franco, A. Hanany, Y.-H. He and P. Kazakopoulos, Duality walls, duality trees and fractional branes, hep-th/0306092 [INSPIRE].

  59. [59]

    A. Hanany, Y.-H. He, C. Sun and S. Sypsas, Superconformal block quivers, duality trees and Diophantine equations, JHEP11 (2013) 017 [arXiv:1211.6111] [INSPIRE].

    ADS  Google Scholar 

  60. [60]

    D. Forcella, A. Hanany, Y.-H. He and A. Zaffaroni, The master space of N = 1 gauge theories, JHEP08 (2008) 012 [arXiv:0801.1585] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  61. [61]

    D. Forcella, A. Hanany, Y.-H. He and A. Zaffaroni, Mastering the master space, Lett. Math. Phys.85 (2008) 163 [arXiv:0801.3477] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  62. [62]

    D. Martelli, J. Sparks and S.-T. Yau, The geometric dual of a-maximisation for toric Sasaki-Einstein manifolds, Commun. Math. Phys.268 (2006) 39 [hep-th/0503183] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  63. [63]

    D. Martelli, J. Sparks and S.-T. Yau, Sasaki-Einstein manifolds and volume minimisation, Commun. Math. Phys.280 (2008) 611 [hep-th/0603021] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  64. [64]

    S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS operators in gauge theories: quivers, Syzygies and Plethystics, JHEP11 (2007) 050 [hep-th/0608050] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  65. [65]

    S.S. Gubser, Einstein manifolds and conformal field theories, Phys. Rev. D59 (1999) 025006 [hep-th/9807164] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  66. [66]

    K.A. Intriligator and B. Wecht, The exact superconformal R symmetry maximizes a, Nucl. Phys. B667 (2003) 183 [hep-th/0304128] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  67. [67]

    A. Butti and A. Zaffaroni, R-charges from toric diagrams and the equivalence of a-maximization and Z-minimization, JHEP11 (2005) 019 [hep-th/0506232] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  68. [68]

    A. Butti and A. Zaffaroni, From toric geometry to quiver gauge theory: the equivalence of a-maximization and Z-minimization, hep-th/0512240 [INSPIRE].

  69. [69]

    M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP07 (1998) 023 [hep-th/9806087] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  70. [70]

    D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys.3 (1999) 363 [hep-th/9904017] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  71. [71]

    R. Altman, J. Gray, Y.-H. He, V. Jejjala and B.D. Nelson, A Calabi-Yau database: threefolds constructed from the Kreuzer-Skarke list, JHEP02 (2015) 158 [arXiv:1411.1418] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  72. [72]

    B. Nill, Gorenstein toric Fano varieties, Manuscripta Math.116 (2005) 183 [math.AG/0405448].

  73. [73]

    S. Cabrera and A. Hanany, Branes and the Kraft-Procesi transition, JHEP11 (2016) 175 [arXiv:1609.07798] [INSPIRE].

    ADS  MATH  Google Scholar 

  74. [74]

    S. Cabrera and A. Hanany, Branes and the Kraft-Procesi transition: classical case, JHEP04 (2018) 127 [arXiv:1711.02378] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  75. [75]

    A. Bourget et al., The Higgs mechanism — Hasse diagrams for symplectic singularities, JHEP01 (2020) 157 [arXiv:1908.04245] [INSPIRE].

    ADS  Google Scholar 

  76. [76]

    A. Bourget, S. Cabrera, J.F. Grimminger, A. Hanany and Z. Zhong, Brane webs and magnetic quivers for SQCD, JHEP03 (2020) 176 [arXiv:1909.00667] [INSPIRE].

    ADS  MATH  Google Scholar 

  77. [77]

    S. Cabrera, A. Hanany and M. Sperling, Magnetic quivers, Higgs branches and 6d N = (1, 0) theories — orthogonal and symplectic gauge groups, JHEP02 (2020) 184 [arXiv:1912.02773] [INSPIRE].

    ADS  Google Scholar 

  78. [78]

    J.F. Grimminger and A. Hanany, Hasse diagrams for 3d N = 4 quiver gauge theories — inversion and the full moduli space, arXiv:2004.01675 [INSPIRE].

  79. [79]

    G. Balletti and A.M. Kasprzyk, Three-dimensional lattice polytopes with two interior lattice points, arXiv:1612.08918.

  80. [80]

    V.V. Batyrev, Toroidal Fano 3-folds, Math. USSR Izv.19 (1982) 13.

    MATH  Google Scholar 

  81. [81]

    V.V. Batyrev and L.A. Borisov, On Calabi-Yau complete intersections in toric varieties, alg-geom/9412017 [INSPIRE].

  82. [82]

    M. Kreuzer and H. Skarke, On the classification of reflexive polyhedra, Commun. Math. Phys.185 (1997) 495 [hep-th/9512204] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  83. [83]

    M. Kreuzer and H. Skarke, Classification of reflexive polyhedra in three-dimensions, Adv. Theor. Math. Phys.2 (1998) 853 [hep-th/9805190] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  84. [84]

    M. Kreuzer and H. Skarke, Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys.4 (2002) 1209 [hep-th/0002240] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  85. [85]

    M. Kreuzer and H. Skarke, PALP: a Package for Analyzing Lattice Polytopes with applications to toric geometry, Comput. Phys. Commun.157 (2004) 87 [math.NA/0204356] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jiakang Bao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2004.05295

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bao, J., Colverd, G.B. & He, Y. Quiver gauge theories: beyond reflexivity. J. High Energ. Phys. 2020, 161 (2020). https://doi.org/10.1007/JHEP06(2020)161

Download citation

Keywords

  • Brane Dynamics in Gauge Theories
  • Differential and Algebraic Geometry
  • Duality in Gauge Field Theories