Non-perturbative structure of semi-inclusive deep-inelastic and Drell-Yan scattering at small transverse momentum

Abstract

We consider semi-inclusive deep inelastic scattering (SIDIS) and Drell-Yan events within transverse momentum dependent (TMD) factorization. Based on the simultaneous fit of multiple data points, we extract the unpolarized TMD distributions and the non-perturbative evolution kernel. The high quality of the fit confirms a complete universality of TMD non-perturbative distributions. The extraction is supplemented by phenomenological analyses of various parts of the TMD factorization, such as sensitivity to non-perturbative parameterizations, perturbative orders, collinear distributions, correlations between parameters, and others.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of hard processes in QCD, Adv. Ser. Direct. High Energy Phys.5 (1989) 1 [hep-ph/0409313] [INSPIRE].

  2. [2]

    A. Bacchetta et al., Semi-inclusive deep inelastic scattering at small transverse momentum, JHEP02 (2007) 093 [hep-ph/0611265] [INSPIRE].

  3. [3]

    A. Bacchetta, D. Boer, M. Diehl and P.J. Mulders, Matches and mismatches in the descriptions of semi-inclusive processes at low and high transverse momentum, JHEP08 (2008) 023 [arXiv:0803.0227] [INSPIRE].

  4. [4]

    T. Becher and M. Neubert, Drell-Yan production at small qT, transverse parton distributions and the collinear anomaly, Eur. Phys. J.C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE].

  5. [5]

    J. Collins, Foundations of perturbative QCD, Cambridge University Press, Cambridge U.K. (2013).

  6. [6]

    M.G. Echevarria, A. Idilbi and I. Scimemi, Factorization theorem for Drell-Yan at low qT and transverse momentum distributions on-the-light-cone, JHEP07 (2012) 002 [arXiv:1111.4996] [INSPIRE].

  7. [7]

    M.G. Echevarría, A. Idilbi and I. Scimemi, Soft and collinear factorization and transverse momentum dependent parton distribution functions, Phys. Lett.B 726 (2013) 795 [arXiv:1211.1947] [INSPIRE].

  8. [8]

    M.G. Echevarria, A. Idilbi and I. Scimemi, Unified treatment of the QCD evolution of all (un-)polarized transverse momentum dependent functions: Collins function as a study case, Phys. Rev.D 90 (2014) 014003 [arXiv:1402.0869] [INSPIRE].

  9. [9]

    J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A formalism for the systematic treatment of rapidity logarithms in quantum field theory, JHEP05 (2012) 084 [arXiv:1202.0814] [INSPIRE].

  10. [10]

    A. Vladimirov, Structure of rapidity divergences in multi-parton scattering soft factors, JHEP04 (2018) 045 [arXiv:1707.07606] [INSPIRE].

  11. [11]

    I. Scimemi and A. Vladimirov, Systematic analysis of double-scale evolution, JHEP08 (2018) 003 [arXiv:1803.11089] [INSPIRE].

  12. [12]

    R. Angeles-Martinez et al., Transverse Momentum Dependent (TMD) parton distribution functions: status and prospects, Acta Phys. Polon.B 46 (2015) 2501 [arXiv:1507.05267] [INSPIRE].

  13. [13]

    P. Sun and F. Yuan, Transverse momentum dependent evolution: matching semi-inclusive deep inelastic scattering processes to Drell-Yan and W/Z boson production, Phys. Rev.D 88 (2013) 114012 [arXiv:1308.5003] [INSPIRE].

  14. [14]

    M. Anselmino, M. Boglione, J.O. Gonzalez Hernandez, S. Melis and A. Prokudin, Unpolarised Transverse Momentum Dependent Distribution and Fragmentation Functions from SIDIS Multiplicities, JHEP04 (2014) 005 [arXiv:1312.6261] [INSPIRE].

  15. [15]

    A. Signori, A. Bacchetta, M. Radici and G. Schnell, Investigations into the flavor dependence of partonic transverse momentum, JHEP11 (2013) 194 [arXiv:1309.3507] [INSPIRE].

  16. [16]

    U. D’Alesio, M.G. Echevarria, S. Melis and I. Scimemi, Non-perturbative QCD effects in qT spectra of Drell-Yan and Z-boson production, JHEP11 (2014) 098 [arXiv:1407.3311] [INSPIRE].

  17. [17]

    C.A. Aidala, B. Field, L.P. Gamberg and T.C. Rogers, Limits on transverse momentum dependent evolution from semi-inclusive deep inelastic scattering at moderate Q, Phys. Rev.D 89 (2014) 094002 [arXiv:1401.2654] [INSPIRE].

  18. [18]

    A. Bacchetta, F. Delcarro, C. Pisano, M. Radici and A. Signori, Extraction of partonic transverse momentum distributions from semi-inclusive deep-inelastic scattering, Drell-Yan and Z-boson production, JHEP06 (2017) 081 [Erratum ibid.1906 (2019) 051] [arXiv:1703.10157] [INSPIRE].

  19. [19]

    I. Scimemi and A. Vladimirov, Analysis of vector boson production within TMD factorization, Eur. Phys. J.C 78 (2018) 89 [arXiv:1706.01473] [INSPIRE].

  20. [20]

    V. Bertone, I. Scimemi and A. Vladimirov, Extraction of unpolarized quark transverse momentum dependent parton distributions from Drell-Yan/Z-boson production, JHEP06 (2019) 028 [arXiv:1902.08474] [INSPIRE].

  21. [21]

    A. Vladimirov, Pion-induced Drell-Yan processes within TMD factorization, JHEP10 (2019) 090 [arXiv:1907.10356] [INSPIRE].

  22. [22]

    A. Bacchetta et al., Transverse-momentum-dependent parton distributions up to N3LL from Drell-Yan data, arXiv:1912.07550 [INSPIRE].

  23. [23]

    T. Gehrmann, T. Luebbert and L.L. Yang, Calculation of the transverse parton distribution functions at next-to-next-to-leading order, JHEP06 (2014) 155 [arXiv:1403.6451] [INSPIRE].

  24. [24]

    M.G. Echevarria, I. Scimemi and A. Vladimirov, Universal transverse momentum dependent soft function at NNLO, Phys. Rev.D 93 (2016) 054004 [arXiv:1511.05590] [INSPIRE].

  25. [25]

    M.G. Echevarria, I. Scimemi and A. Vladimirov, Transverse momentum dependent fragmentation function at next-to–next-to–leading order, Phys. Rev.D 93 (2016) 011502 [Erratum ibid.D 94 (2016) 099904] [arXiv:1509.06392] [INSPIRE].

  26. [26]

    M.G. Echevarria, I. Scimemi and A. Vladimirov, Unpolarized transverse momentum dependent parton distribution and fragmentation functions at next-to-next-to-leading order, JHEP09 (2016) 004 [arXiv:1604.07869] [INSPIRE].

  27. [27]

    Y. Li and H.X. Zhu, Bootstrapping rapidity anomalous dimensions for transverse-momentum resummation, Phys. Rev. Lett.118 (2017) 022004 [arXiv:1604.01404] [INSPIRE].

  28. [28]

    A.A. Vladimirov, Correspondence between soft and rapidity anomalous dimensions, Phys. Rev. Lett.118 (2017) 062001 [arXiv:1610.05791] [INSPIRE].

  29. [29]

    M.-X. Luo et al., Transverse parton distribution and fragmentation functions at NNLO: the quark case, JHEP10 (2019) 083 [arXiv:1908.03831] [INSPIRE].

  30. [30]

    T. Gehrmann et al., Calculation of the quark and gluon form factors to three loops in QCD, JHEP06 (2010) 094 [arXiv:1004.3653] [INSPIRE].

  31. [31]

    P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Five-loop running of the QCD coupling constant, Phys. Rev. Lett.118 (2017) 082002 [arXiv:1606.08659] [INSPIRE].

  32. [32]

    S. Moch et al., Four-loop non-singlet splitting functions in the planar limit and beyond, JHEP10 (2017) 041 [arXiv:1707.08315] [INSPIRE].

  33. [33]

    S. Moch et al., On quartic colour factors in splitting functions and the gluon cusp anomalous dimension, Phys. Lett.B 782 (2018) 627 [arXiv:1805.09638] [INSPIRE].

  34. [34]

    R.N. Lee, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Four-loop quark form factor with quartic fundamental colour factor, JHEP02 (2019) 172 [arXiv:1901.02898] [INSPIRE].

  35. [35]

    F. Landry, R. Brock, P.M. Nadolsky and C.P. Yuan, Tevatron Run-1 Z boson data and Collins-Soper-Sterman resummation formalism, Phys. Rev.D 67 (2003) 073016 [hep-ph/0212159] [INSPIRE].

  36. [36]

    J.-w. Qiu and X.-f. Zhang, Role of the nonperturbative input in QCD resummed Drell-Yan QT distributions, Phys. Rev.D 63 (2001) 114011 [hep-ph/0012348] [INSPIRE].

  37. [37]

    G. Bozzi et al., Transverse-momentum resummation: A Perturbative study of Z production at the Tevatron, Nucl. Phys.B 815 (2009) 174 [arXiv:0812.2862] [INSPIRE].

  38. [38]

    S. Catani et al.i, Vector boson production at hadron colliders: hard-collinear coefficients at the NNLO, Eur. Phys. J.C 72 (2012) 2195 [arXiv:1209.0158] [INSPIRE].

  39. [39]

    W. Bizoń et al., Fiducial distributions in Higgs and Drell-Yan production at N3LL+NNLO, JHEP12 (2018) 132 [arXiv:1805.05916] [INSPIRE].

  40. [40]

    W. Bizon et al., The transverse momentum spectrum of weak gauge bosons at N3LL + NNLO, Eur. Phys. J.C 79 (2019) 868 [arXiv:1905.05171] [INSPIRE].

  41. [41]

    J.C. Collins and D.E. Soper, Back-to-back jets: Fourier transform from B to K-transverse, Nucl. Phys.B 197 (1982) 446 [INSPIRE].

  42. [42]

    S.M. Aybat and T.C. Rogers, TMD parton distribution and fragmentation functions with QCD evolution, Phys. Rev.D 83 (2011) 114042 [arXiv:1101.5057] [INSPIRE].

  43. [43]

    artemide web-page, https://teorica.fis.ucm.es/artemide/.

  44. [44]

    artemide repository, https://github.com/vladimirovalexey/artemide-public.

  45. [45]

    M. Anselmino et al., The role of Cahn and sivers effects in deep inelastic scattering, Phys. Rev.D 71 (2005) 074006 [hep-ph/0501196] [INSPIRE].

  46. [46]

    Particle Data Group collaboration, Review of particle physics, Chin. Phys.C 40 (2016) 100001 [INSPIRE].

  47. [47]

    ATLAS collaboration, Measurement of the Z/γboson transverse momentum distribution in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, JHEP09 (2014) 145 [arXiv:1406.3660] [INSPIRE].

  48. [48]

    ATLAS collaboration, Measurement of the transverse momentum and \( {\phi}_{\eta}^{\ast } \)distributions of Drell–Yan lepton pairs in proton–proton collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, Eur. Phys. J.C 76 (2016) 291 [arXiv:1512.02192] [INSPIRE].

  49. [49]

    CMS collaboration, Measurement of the rapidity and transverse momentum distributions of Z bosons in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev.D 85 (2012) 032002 [arXiv:1110.4973] [INSPIRE].

  50. [50]

    CMS collaboration, Measurement of the transverse momentum spectra of weak vector bosons produced in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, JHEP02 (2017) 096 [arXiv:1606.05864] [INSPIRE].

  51. [51]

    S. Bastami et al., Semi-inclusive deep inelastic scattering in Wandzura-Wilczek-type approximation, JHEP06 (2019) 007 [arXiv:1807.10606] [INSPIRE].

  52. [52]

    I. Balitsky and A. Tarasov, Power corrections to TMD factorization for Z-boson production, JHEP05 (2018) 150 [arXiv:1712.09389] [INSPIRE].

  53. [53]

    D. Boer and W. Vogelsang, Drell-Yan lepton angular distribution at small transverse momentum, Phys. Rev.D 74 (2006) 014004 [hep-ph/0604177] [INSPIRE].

  54. [54]

    P.J. Mulders and R.D. Tangerman, The complete tree level result up to order 1/Q for polarized deep inelastic leptoproduction, Nucl. Phys.B 461 (1996) 197 [Erratum ibid.B 484 (1997) 538] [hep-ph/9510301] [INSPIRE].

  55. [55]

    A. Bacchetta, U. D’Alesio, M. Diehl and C.A. Miller, Single-spin asymmetries: the Trento conventions, Phys. Rev.D 70 (2004) 117504 [hep-ph/0410050] [INSPIRE].

  56. [56]

    S. Arnold, A. Metz and M. Schlegel, Dilepton production from polarized hadron hadron collisions, Phys. Rev.D 79 (2009) 034005 [arXiv:0809.2262] [INSPIRE].

  57. [57]

    M. Nefedov and V. Saleev, Off-shell initial state effects, gauge invariance and angular distributions in the Drell–Yan process, Phys. Lett.B 790 (2019) 551 [arXiv:1810.04061] [INSPIRE].

  58. [58]

    M.G. Echevarria, A. Idilbi, A. Sch¨afer and I. Scimemi, Model-independent evolution of Transverse Momentum Dependent Distribution functions (TMDs) at NNLL, Eur. Phys. J.C 73 (2013) 2636 [arXiv:1208.1281] [INSPIRE].

  59. [59]

    I. Scimemi, A. Tarasov and A. Vladimirov, Collinear matching for Sivers function at next-to-leading order, JHEP05 (2019) 125 [arXiv:1901.04519] [INSPIRE].

  60. [60]

    S. Moch and J.A.M. Vermaseren, Deep inelastic structure functions at two loops, Nucl. Phys.B 573 (2000) 853 [hep-ph/9912355] [INSPIRE].

  61. [61]

    M. Stratmann and W. Vogelsang, Next-to-leading order evolution of polarized and unpolarized fragmentation functions, Nucl. Phys.B 496 (1997) 41 [hep-ph/9612250] [INSPIRE].

  62. [62]

    I. Scimemi and A. Vladimirov, Power corrections and renormalons in Transverse Momentum Distributions, JHEP03 (2017) 002 [arXiv:1609.06047] [INSPIRE].

  63. [63]

    S. Tafat, Nonperturbative corrections to the Drell-Yan transverse momentum distribution, JHEP05 (2001) 004 [hep-ph/0102237] [INSPIRE].

  64. [64]

    A.A. Vladimirov, Self-contained definition of Collins-Soper kernel, arXiv:2003.02288 [INSPIRE].

  65. [65]

    F. Hautmann, I. Scimemi and A. Vladimirov, Non-perturbative contributions to vector-boson transverse momentum spectra in hadronic collisions, Phys. Lett.B 806 (2020) 135478 [arXiv:2002.12810] [INSPIRE].

  66. [66]

    J. Collins and T. Rogers, Understanding the large-distance behavior of transverse-momentum-dependent parton densities and the Collins-Soper evolution kernel, Phys. Rev.D 91 (2015) 074020 [arXiv:1412.3820] [INSPIRE].

  67. [67]

    HERMES collaboration, Multiplicities of charged pions and kaons from semi-inclusive deep-inelastic scattering by the proton and the deuteron, Phys. Rev.D 87 (2013) 074029 [arXiv:1212.5407] [INSPIRE].

  68. [68]

    COMPASS collaboration, Transverse-momentum-dependent multiplicities of charged hadrons in muon-deuteron deep inelastic scattering, Phys. Rev.D 97 (2018) 032006 [arXiv:1709.07374] [INSPIRE].

  69. [69]

    ZEUS collaboration, Inclusive charged particle distributions in deep inelastic scattering events at HERA, Z. Phys.C 70 (1996) 1 [hep-ex/9511010] [INSPIRE].

  70. [70]

    H1 collaboration, Measurement of charged particle transverse momentum spectra in deep inelastic scattering, Nucl. Phys.B 485 (1997) 3 [hep-ex/9610006] [INSPIRE].

  71. [71]

    R. Asaturyan et al., Semi-inclusive charged-pion electroproduction off protons and deuterons: cross sections, ratios and access to the quark-parton model at low energies, Phys. Rev.C 85 (2012) 015202 [arXiv:1103.1649] [INSPIRE].

  72. [72]

    COMPASS collaboration, Hadron transverse momentum distributions in muon deep inelastic scattering at 160 GeV/c, Eur. Phys. J.C 73 (2013) 2531 [Erratum ibid.C 75 (2015) 94] [arXiv:1305.7317] [INSPIRE].

  73. [73]

    A.S. Ito et al., Measurement of the continuum of dimuons produced in high-energy proton-nucleus collisions, Phys. Rev.D 23 (1981) 604 [INSPIRE].

  74. [74]

    G. Moreno et al., Dimuon production in proton-copper collisions at \( \sqrt{s} \) = 38.8 GeV, Phys. Rev.D 43 (1991) 2815 [INSPIRE].

  75. [75]

    E772 collaboration, Cross-sections for the production of high mass muon pairs from 800 GeV proton bombardment of H-2, Phys. Rev.D 50 (1994) 3038 [Erratum ibid.D 60 (1999) 119903] [INSPIRE].

  76. [76]

    PHENIX collaboration, Measurements of μμ pairs from open heavy flavor and Drell-Yan in p + p collisions at \( \sqrt{s} \) = 200 GeV, Phys. Rev.D 99 (2019) 072003 [arXiv:1805.02448] [INSPIRE].

  77. [77]

    CDF collaboration, The transverse momentum and total cross section of e+epairs in the Z boson region from pp̄ collisions at \( \sqrt{s} \) = 1.8 TeV, Phys. Rev. Lett.84 (2000) 845 [hep-ex/0001021] [INSPIRE].

  78. [78]

    CDF collaboration, Transverse momentum cross section of e+ e pairs in the Z -boson region from \( p\overline{p} \)collisions at \( \sqrt{s} \) = 1.96 TeV, Phys. Rev.D 86 (2012) 052010 [arXiv:1207.7138] [INSPIRE].

  79. [79]

    D0 collaboration, Measurement of the inclusive differential cross section for Z bosons as a function of transverse momentum in \( \overline{p}p \)collisions at \( \sqrt{s} \) = 1.8 TeV, Phys. Rev.D 61 (2000) 032004 [hep-ex/9907009] [INSPIRE].

  80. [80]

    D0 collaboration, Measurement of the shape of the boson transverse momentum distribution in \( p\overline{p} \)→ Z/γ→ e+e + X events produced at \( \sqrt{s} \) = 1.96 TeV, Phys. Rev. Lett.100 (2008) 102002 [arXiv:0712.0803] [INSPIRE].

  81. [81]

    D0 collaboration, Measurement of the normalized Z/γ→ μ+ μ transverse momentum distribution in pp̄ collisions at \( \sqrt{s} \) = 1.96 TeV, Phys. Lett.B 693 (2010) 522 [arXiv:1006.0618] [INSPIRE].

  82. [82]

    LHCb collaboration, Measurement of the forward Z boson production cross-section in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP08 (2015) 039 [arXiv:1505.07024] [INSPIRE].

  83. [83]

    LHCb collaboration, Measurement of forward W and Z boson production in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP01 (2016) 155 [arXiv:1511.08039] [INSPIRE].

  84. [84]

    LHCb collaboration, Measurement of the forward Z boson production cross-section in pp collisions at \( \sqrt{s} \) = 13 TeV, JHEP09 (2016) 136 [arXiv:1607.06495] [INSPIRE].

  85. [85]

    A. Bacchetta et al., Difficulties in the description of Drell-Yan processes at moderate invariant mass and high transverse momentum, Phys. Rev.D 100 (2019) 014018 [arXiv:1901.06916] [INSPIRE].

  86. [86]

    NNPDF collaboration, Charged hadron fragmentation functions from collider data, Eur. Phys. J.C 78 (2018) 651 [arXiv:1807.03310] [INSPIRE].

  87. [87]

    NNPDF collaboration, A determination of the fragmentation functions of pions, kaons and protons with faithful uncertainties, Eur. Phys. J.C 77 (2017) 516 [arXiv:1706.07049] [INSPIRE].

  88. [88]

    V. Bertone, S. Carrazza and J. Rojo, APFEL: A PDF Evolution Library with QED corrections, Comput. Phys. Commun.185 (2014) 1647 [arXiv:1310.1394] [INSPIRE].

  89. [89]

    NNPDF collaboration, A determination of parton distributions with faithful uncertainty estimation, Nucl. Phys.B 809 (2009) 1 [Erratum ibid.B 816 (2009) 293] [arXiv:0808.1231] [INSPIRE].

  90. [90]

    R.D. Ball et al., Parton distribution benchmarking with LHC data, JHEP04 (2013) 125 [arXiv:1211.5142] [INSPIRE].

  91. [91]

    D. Gutierrez-Reyes, S. Leal-Gomez, I. Scimemi and A. Vladimirov, Linearly polarized gluons at next-to-next-to leading order and the Higgs transverse momentum distribution, JHEP11 (2019) 121 [arXiv:1907.03780] [INSPIRE].

  92. [92]

    NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J.C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].

  93. [93]

    H1, ZEUS collaboration, Combination of measurements of inclusive deep inelastic e±p scattering cross sections and QCD analysis of HERA data, Eur. Phys. J.C 75 (2015) 580 [arXiv:1506.06042] [INSPIRE].

  94. [94]

    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J.C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].

  95. [95]

    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev.D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].

  96. [96]

    J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys.G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].

  97. [97]

    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J.C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].

  98. [98]

    NNPDF collaboration, Reweighting NNPDFs: the W lepton asymmetry, Nucl. Phys.B 849 (2011) 112 [Erratum ibid.B 854 (2012) 926] [arXiv:1012.0836] [INSPIRE].

  99. [99]

    D. Gutierrez-Reyes et al., Probing transverse-momentum distributions with groomed jets, JHEP08 (2019) 161 [arXiv:1907.05896] [INSPIRE].

  100. [100]

    D. Gutierrez-Reyes, I. Scimemi, W.J. Waalewijn and L. Zoppi, Transverse momentum dependent distributions in e+eand semi-inclusive deep-inelastic scattering using jets, JHEP10 (2019) 031 [arXiv:1904.04259] [INSPIRE].

  101. [101]

    D. Gutierrez-Reyes, I. Scimemi, W.J. Waalewijn and L. Zoppi, Transverse momentum dependent distributions with jets, Phys. Rev. Lett.121 (2018) 162001 [arXiv:1807.07573] [INSPIRE].

  102. [102]

    D. de Florian et al., Parton-to-pion fragmentation reloaded, Phys. Rev.D 91 (2015) 014035 [arXiv:1410.6027] [INSPIRE].

  103. [103]

    D. de Florian et al., Parton-to-kaon fragmentation revisited, Phys. Rev.D 95 (2017) 094019 [arXiv:1702.06353] [INSPIRE].

  104. [104]

    JAM collaboration, Strange quark suppression from a simultaneous Monte Carlo analysis of parton distributions and fragmentation functions, Phys. Rev.D 101 (2020) 074020 [arXiv:1905.03788] [INSPIRE].

  105. [105]

    J.O. Gonzalez-Hernandez, T.C. Rogers, N. Sato and B. Wang, Challenges with large transverse momentum in semi-inclusive deeply inelastic scattering, Phys. Rev.D 98 (2018) 114005 [arXiv:1808.04396] [INSPIRE].

  106. [106]

    T. Matsuura, S.C. van der Marck and W.L. van Neerven, The calculation of the second order soft and virtual contributions to the Drell-Yan cross-section, Nucl. Phys.B 319 (1989) 570 [INSPIRE].

  107. [107]

    G. Kramer and B. Lampe, Two jet cross-section in e+eannihilation, Z. Phys.C 34 (1987) 497 [Erratum ibid.C 42 (1989) 504] [INSPIRE].

  108. [108]

    V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Origin of the large perturbative corrections to Higgs production at hadron colliders, Phys. Rev.D 79 (2009) 033013 [arXiv:0808.3008] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexey Vladimirov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 1912.06532

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scimemi, I., Vladimirov, A. Non-perturbative structure of semi-inclusive deep-inelastic and Drell-Yan scattering at small transverse momentum. J. High Energ. Phys. 2020, 137 (2020). https://doi.org/10.1007/JHEP06(2020)137

Download citation

Keywords

  • Deep Inelastic Scattering (Phenomenology)
  • QCD Phenomenology