Phase transitions in a three-dimensional analogue of Klebanov-Strassler

Abstract

We use top-down holography to study the thermodynamics of a one-parameter family of three-dimensional, strongly coupled Yang-Mills-Chern-Simons theories with M-theory duals. For generic values of the parameter, the theories exhibit a mass gap but no confinement, meaning no linear quark-antiquark potential. For two specific values of the parameter they flow to an infrared fixed point or to a confining vacuum, respectively. As in the Klebanov-Strassler solution, on the gravity side the mass gap is generated by the smooth collapse to zero size of a cycle in the internal geometry. We uncover a rich phase diagram with thermal phase transitions of first and second order, a triple point and a critical point.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    J. Braun, H. Gies, L. Janssen and D. Roscher, Phase structure of many-flavor QED3, Phys. Rev. D90 (2014) 036002 [arXiv:1404.1362] [INSPIRE].

  2. [2]

    Z. Komargodski and N. Seiberg, A symmetry breaking scenario for QCD3, JHEP01 (2018) 109 [arXiv:1706.08755] [INSPIRE].

  3. [3]

    J. Gomis, Z. Komargodski and N. Seiberg, Phases Of Adjoint QCD3And Dualities, SciPost Phys.5 (2018) 007 [arXiv:1710.03258] [INSPIRE].

  4. [4]

    C. Choi, M. Roček and A. Sharon, Dualities and Phases of 3D N = 1 SQCD, JHEP10 (2018) 105 [arXiv:1808.02184] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    E. Witten, Super-symmetric index of three-dimensional gauge theory, in M.A. Shifman ed. The many faces of the super-world, World Scientific (2000), pp. 156-184, hep-th/9903005 [INSPIRE].

  6. [6]

    M.C. Diamantini, P. Sodano and C.A. Trugenberger, Oblique confinement and phase transitions in Chern-Simons gauge theories, Phys. Rev. Lett.75 (1995) 3517 [cond-mat/9407073] [INSPIRE].

  7. [7]

    P.H. Damgaard, U.M. Heller, A. Krasnitz and T. Madsen, A quark-antiquark condensate in three-dimensional QCD, Phys. Lett. B440 (1998) 129 [hep-lat/9803012] [INSPIRE].

  8. [8]

    N. Karthik and R. Narayanan, Bilinear condensate in three-dimensionallarge-NcQCD, Phys. Rev. D94 (2016) 045020 [arXiv:1607.03905] [INSPIRE].

  9. [9]

    I.R. Klebanov and E. Witten, Super-conformal field theory on three-branes at a Calabi- Yau singularity, Nucl. Phys. B536 (1998) 199 [hep-th/9807080] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    A.F. Faedo, D. Mateos, D. Pravos and J.G. Subils, Mass Gap without Confinement, JHEP06 (2017) 153 [arXiv:1702.05988] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    M. Cvetič, G.W. Gibbons, H. Lü and C.N. Pope, New cohomogeneity one metrics with spin (7) holonomy, J. Geom. Phys.49 (2004) 350 [math/0105119] [INSPIRE].

  12. [12]

    M. Cvetič, G.W. Gibbons, H. Lü and C.N. Pope, New complete noncompact spin (7) manifolds, Nucl. Phys. B620 (2002) 29 [hep-th/0103155] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: Duality cascades and χ SB resolution of naked singularities, JHEP08 (2000) 052 [hep-th/0007191] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys.2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  15. [15]

    A. Buchel, Klebanov-Strassler black hole, JHEP01 (2019) 207 [arXiv:1809.08484] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    O. Aharony, A. Buchel and P. Kerner, The black hole in the throat: Thermodynamics of strongly coupled cascading gauge theories, Phys. Rev. D76 (2007) 086005 [arXiv:0706.1768] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    A. Loewy and Y. Oz, Branes in special holonomy backgrounds, Phys. Lett. B537 (2002) 147 [hep-th/0203092] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    A. Hashimoto, S. Hirano and P. Ouyang, Branes and fluxes in special holonomy manifolds and cascading field theories, JHEP06 (2011) 101 [arXiv:1004.0903] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    M. Cvetič, G.W. Gibbons, H. Lü and C.N. Pope, Supersymmetric nonsingular fractional D-2 branes and NS-NS 2 branes, Nucl. Phys. B606 (2001) 18 [hep-th/0101096] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    C.P. Herzog, String tensions and three-dimensional confining gauge theories, Phys. Rev. D66 (2002) 065009 [hep-th/0205064] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    H. Ooguri and C.-S. Park, Superconformal Chern-Simons Theories and the Squashed Seven Sphere, JHEP11 (2008) 082 [arXiv:0808.0500] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    M. Attems, Y. Bea, J. Casalderrey-Solana, D. Mateos, M. Triana and M. Zilhão, Holographic Collisions across a Phase Transition, Phys. Rev. Lett.121 (2018) 261601 [arXiv:1807.05175] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    M. Attems, Y. Bea, J. Casalderrey-Solana, D. Mateos, M. Triana and M. Zilhao, Phase Transitions, Inhomogeneous Horizons and Second-Order Hydrodynamics, JHEP06 (2017) 129 [arXiv:1703.02948] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    M. Attems, Y. Bea, J. Casalderrey-Solana, D. Mateos and M. Zilhão, Dynamics of Phase Separation from Holography, JHEP01 (2020) 106 [arXiv:1905.12544] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    R.A. Janik, J. Jankowski and H. Soltanpanahi, Real-Time dynamics and phase separation in a holographic first order phase transition, Phys. Rev. Lett.119 (2017) 261601 [arXiv:1704.05387] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    L. Bellantuono, R.A. Janik, J. Jankowski and H. Soltanpanahi, Dynamics near a first order phase transition, JHEP10 (2019) 146 [arXiv:1906.00061] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    Y. Bea et al., Crossing a large-Ncphase transition at finite volume, to appear.

  28. [28]

    S.S. Gubser, Curvature singularities: The Good, the bad and the naked, Adv. Theor. Math. Phys.4 (2000) 679 [hep-th/0002160] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  29. [29]

    D. Elander, A.F. Faedo, D. Mateos, D. Pravos and J.G. Subils, Mass spectrum of gapped, non-confining theories with multi-scale dynamics, JHEP05 (2019) 175 [arXiv:1810.04656] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    P. Basu, F. Nogueira, M. Rozali, J.B. Stang and M. Van Raamsdonk, Towards A Holographic Model of Color Superconductivity, New J. Phys.13 (2011) 055001 [arXiv:1101.4042] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    Ó.J.C. Dias, G.S. Hartnett, B.E. Niehoff and J.E. Santos, Mass-deformed M2 branes in Stenzel space, JHEP11 (2017) 105 [arXiv:1704.02323] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. [32]

    G.C. Giecold, Finite-Temperature Fractional D2-branes and the Deconfinement Transition in 2+1 Dimensions, JHEP03 (2010) 109 [arXiv:0912.1558] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    I. Bena, Ó.J.C. Dias, G.S. Hartnett, B.E. Niehoff and J.E. Santos, Holographic dual of hot Polchinski-Strassler quark-gluon plasma, JHEP09 (2019) 033 [arXiv:1805.06463] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. [34]

    I. Bena, A. Buchel and O.J.C. Dias, Horizons cannot save the Landscape, Phys. Rev. D87 (2013) 063012 [arXiv:1212.5162] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    I. Bena, J. Blaback, U.H. Danielsson and T. Van Riet, Antibranes cannot become black, Phys. Rev. D87 (2013) 104023 [arXiv:1301.7071] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    D. Cohen-Maldonado, J. Diaz, T. van Riet and B. Vercnocke, Observations on fluxes near anti-branes, JHEP01 (2016) 126 [arXiv:1507.01022] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    D. Cohen-Maldonado, J. Diaz and F.F. Gautason, Polarised antibranes from Smarr relations, JHEP05 (2016) 175 [arXiv:1603.05678] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. [38]

    G.S. Hartnett, Localised Anti-Branes in Flux Backgrounds, JHEP06 (2015) 007 [arXiv:1501.06568] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  39. [39]

    J. Armas, N. Nguyen, V. Niarchos, N.A. Obers and T. Van Riet, Meta-stable non-extremal anti-branes, Phys. Rev. Lett.122 (2019) 181601 [arXiv:1812.01067] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    J. Armas, N. Nguyen, V. Niarchos and N.A. Obers, Thermal transitions of metastable M-branes, JHEP08 (2019) 128 [arXiv:1904.13283] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. [41]

    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D68 (2003) 046005 [hep-th/0301240] [INSPIRE].

  42. [42]

    R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D60 (1999) 104001 [hep-th/9903238] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Javier G. Subils.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2002.08279

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elander, D., Faedo, A.F., Mateos, D. et al. Phase transitions in a three-dimensional analogue of Klebanov-Strassler. J. High Energ. Phys. 2020, 131 (2020). https://doi.org/10.1007/JHEP06(2020)131

Download citation

Keywords

  • Black Holes in String Theory
  • Confinement
  • Gauge-gravity correspondence