Scalar products of Bethe vectors in the 8-vertex model

Abstract

We obtain a determinant representation of normalized scalar products of on-shell and off-shell Bethe vectors in the inhomogeneous 8-vertex model. We consider the case of rational anisotropy parameter and use the generalized algebraic Bethe ansatz approach. Our method is to obtain a system of linear equations for the scalar products, prove its solvability and solve it in terms of determinants of explicitly known matrices.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    B. Sutherland, Two-dimensional hydrogen bonded crystals without the ice rule, J. Math. Phys.11 (1970) 3183.

    ADS  Article  Google Scholar 

  2. [2]

    C. Fan and F.Y. Wu, General lattice model of phase transitions, Phys. Rev. B2 (1970) 723 [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    R.J. Baxter, Eight-vertex model in lattice statistics, Phys. Rev. Lett.26 (1971) 832 [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    R. Baxter, Exactly solved models in statistical mechanics, Academic Press, U.S.A. (1982).

  5. [5]

    W. Heisenberg, Zur Theorie des Ferromagnetismus, Z. Phys.49 (1928) 619 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    R.J. Baxter, One-dimensional anisotropic Heisenberg chain, Phys. Rev. Lett.26 (1971) 834 [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    R. Baxter, Partition function of the eight-vertex lattice model, Ann. Phys.70 (1972) 193.

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    R. Baxter, Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. I. Some fundamental eigenvectors, Ann. Phys.76 (1973) 1.

    ADS  Article  Google Scholar 

  9. [9]

    R. Baxter, Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. II. Equivalence to a Generalized Ice-type Lattice Model, Ann. Phys.76 (1973) 25.

  10. [10]

    R. Baxter, Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. III. Eigenvectors of the transfer matrix and Hamiltonian, Ann. Phys.76 (1973) 48.

    ADS  Article  Google Scholar 

  11. [11]

    A. Klümper and J. Zittartz, Eigenvalues of the eight-vertex model transfer matrix and the spectrum of the XYZ Hamiltonian, Z. Phys. B71 (1988) 495.

  12. [12]

    A. Klümper and J. Zittartz, The eight-vertex model: spectrum of the transfer matrix and classification of the excited states, Z. Phys. B75 (1989) 371.

  13. [13]

    T. Takebe, Bethe Ansatz for higher spin eight vertex models, q-alg/9504027.

  14. [14]

    K. Fabricius and B. McCoy, New developments in the eight vertex model, J. Stat. Phys.111 (2003) 323 [cond-mat/0207177].

  15. [15]

    K. Fabricius and B.M. McCoy, New developments in the eight vertex model II. Chains of odd length, J. Stat. Phys.120 (2005) 37 [cond-mat/0410113].

  16. [16]

    K. Fabricius and B. McCoy, The eight vertex model. New results, cond-mat/0612699.

  17. [17]

    K. Fabricius and B.M. McCoy, The TQ equation of the 8 vertex model for complex elliptic roots of unity, J. Phys.40 (2007) 14893 [arXiv:0709.0903] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  18. [18]

    K. Fabricius, A new Q-matrix in the eight-vertex model, J. Phys.40 (2007) 4075 [cond-mat/0610481] [INSPIRE].

  19. [19]

    V.V. Bazhanov and V.V. Mangazeev, Analytic theory of the eight-vertex model, Nucl. Phys. B775 (2007) 225 [hep-th/0609153] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    T. Takebe, Q-operators for higher spin eight vertex models with an even number of sites, Lett. Math. Phys.106 (2016) 319 [arXiv:1509.08616] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    E.K. Sklyanin, On some algebraic structures associated with the Yang–Baxter equation, Funct. Anal. Appl.16 (1982) 263.

    Article  Google Scholar 

  22. [22]

    O. Foda et al., An elliptic quantum algebra for sl(2), Lett. Math. Phys.32 (1994) 259 [hep-th/9403094] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    C. Fronsdal, Quasi-Hopf deformations of quantum groups, Lett. Math. Phys.40 (1997) 117 [q-alg/9611028] [INSPIRE].

  24. [24]

    M. Jimbo, H. Konno, S. Odake and J. Shiraishi, Quasi-Hopf twistors for elliptic quantum groups, Transform. Groups4 (1999) 303 [q-alg/9712029].

  25. [25]

    E. Buffenoir, Ph. Roche and V. Terras, Universal vertex-I RF transformation for quantum affine algebras, J. Math. Phys.53 (2012) 103515 [arXiv:0707.0955].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    J.D. Johnson, S. Krinsky and B.M. McCoy, Vertical-arrow correlation length in the eight-vertex model and the low-lying excitations of the X-Y-Z Hamiltonian, Phys. Rev. A8 (1973) 2526 [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    M. Jimbo, T. Miwa and A. Nakayashiki, Difference equations for the correlation functions of the eight vertex model, J. Phys.26 (1993) 2199 [hep-th/9211066] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  28. [28]

    M. Lashkevich and Y. Pugai, Free field construction for correlation functions of the eight vertex model, Nucl. Phys. B516 (1998) 623 [hep-th/9710099] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    M. Lashkevich, Free field construction for the eight vertex model: representation for form-factors, Nucl. Phys. B621 (2002) 587 [hep-th/0103144] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    J. Shiraishi, Free field constructions for the elliptic algebra \( {\mathcal{A}}_{q,p}\left({\hat{sl}}_2\right) \)and Baxter’s eight-vertex model, Int. J. Mod. Phys. A19 (2004) 363 [math.QA/0302097].

  31. [31]

    H. Boos, M. Jimbo, T. Miwa, F. Smirnov and Y. Takeyama, Traces on the Sklyanin algebra and correlation functions of the eight-vertex model, J. Phys.38 (2005) 7629 [hep-th/0504072] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  32. [32]

    L.D. Faddeev, E.K. Sklyanin and L.A. Takhtajan, The quantum inverse problem method. 1, Theor. Math. Phys.40 (1980) 688 [INSPIRE].

  33. [33]

    L.D. Faddeev, How algebraic Bethe ansatz works for integrable model, in Quantum symmetries, A. Connes et al. eds., North Holland, The Netherlands (1998), hep-th/9605187 [INSPIRE].

  34. [34]

    L. Takhtajan and L. Faddeev, The quantum method of the inverse problem and the Heisenberg X Y Z model, Usp. Mat. Nauk34 (1979) 13 [Russ. Math. Surveys34 (1979) 11].

  35. [35]

    A.G. Izergin and V.E. Korepin, The quantum inverse scattering method approach to correlation functions, Commun. Math. Phys.94 (1981) 67.

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    N. Kitanine, J.M. Maillet and V. Terras, Form factors of the XXZ Heisenberg spin- \( \frac{1}{2} \)finite chain, Nucl. Phys. B554 (1999) 647 [math-ph/9807020] [INSPIRE].

  37. [37]

    F. Gohmann and V.E. Korepin, Solution of the quantum inverse problem, J. Phys.33 (2000) 1199 [hep-th/9910253] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  38. [38]

    J.M. Maillet and V. Terras, On the quantum inverse scattering problem, Nucl. Phys. B575 (2000) 627 [hep-th/9911030] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  39. [39]

    M. Gaudin, Modèles exacts en mécanique statistique: la méthode de Bethe et ses généralisations, Centre d’Etudes Nucĺeaires de Saclay, CEA-N-1559:1 (1972).

  40. [40]

    M. Gaudin, La fonction d’onde de Bethe, Masson, France (1983).

  41. [41]

    M. Gaudin, B.M. McCoy and T.T. Wu, Normalization sum for the Bethe’s hypothesis wave functions of the Heisenberg-Ising chain, Phys. Rev. D23 (1981) 417 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  42. [42]

    V.E. Korepin, Calculation of norms of Bethe wave functions, Commun. Math. Phys.86 (1982) 391.

    ADS  MathSciNet  Article  Google Scholar 

  43. [43]

    N.A. Slavnov, Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe Ansatz, Theor. Math. Phys.79 (1989) 502.

    MathSciNet  Article  Google Scholar 

  44. [44]

    Y.-S. Wang, The scalar products and the norm of Bethe eigenstates for the boundary XXX Heisenberg spin-1/2 finite chain, Nucl. Phys. B622 (2002) 633 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  45. [45]

    N. Kitanine et al., Correlation functions of the open XXZ chain I, J. Stat. Mech.0710 (2007) P10009 [arXiv:0707.1995] [INSPIRE].

  46. [46]

    S. Belliard and R.A. Pimenta, Slavnov and Gaudin-Korepin formulas for models without U(1) symmetry: the twisted XXX chain, SIGMA11 (2015) 099 [arXiv:1506.06550] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  47. [47]

    S. Belliard and R.A. Pimenta, Slavnov and Gaudin-Korepin formulas for models without U(1) symmetry: the XXX chain on the segment, J. Phys.49 (2016) 17LT01 [arXiv:1507.03242] [INSPIRE].

  48. [48]

    D. Levy-Bencheton and V. Terras, Algebraic Bethe Ansatz approach to form factors and correlation functions of the cyclic eight-vertex solid-on-solid model, J. Stat. Mech. Theory Exp.04 (2013) P04015 [arXiv:1212.0246].

  49. [49]

    S. Belliard and N.A. Slavnov, Why scalar products in the algebraic Bethe ansatz have determinant representation, JHEP10 (2019) 103 [arXiv:1908.00032] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    V.E. Korepin, Dual field formulation of quantum integrable models, Commun. Math. Phys.113 (1987) 177.

    ADS  MathSciNet  Article  Google Scholar 

  51. [51]

    T. Kojima, V.E. Korepin and N.A. Slavnov, Determinant representation for dynamical correlation functions of the quantum nonlinear Schrödinger equation, Commun. Math. Phys.188 (1997) 657 [hep-th/9611216] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    V.E. Korepin, N.M. Bogoliubov and A.G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge University Press, Cambridge U.K. (1993).

    Google Scholar 

  53. [53]

    M. Jimbo, K. Miki, T. Miwa and A. Nakayashiki, Correlation functions of the XXZ model for< −1, Phys. Lett. A168 (1992) 256 [hep-th/9205055] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  54. [54]

    N. Kitanine, J.M. Maillet and V. Terras, Correlation functions of the XXZ Heisenberg spin- \( \frac{1}{2} \)chain in a magnetic field, Nucl. Phys. B567 (2000) 554 [math-ph/9907019] [INSPIRE].

  55. [55]

    F. Gohmann, A. Klumper and A. Seel, Integral representations for correlation functions of the XXZ chain at finite temperature, J. Phys.37 (2004) 7625 [hep-th/0405089] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  56. [56]

    N. Kitanine, J.M. Maillet, N.A. Slavnov and V. Terras, Master equation for spin-spin correlation functions of the XXZ chain, Nucl. Phys. B712 (2005) 600 [hep-th/0406190] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  57. [57]

    N. Kitanine et al., Algebraic Bethe ansatz approach to the asymptotic behavior of correlation functions, J. Stat. Mech.0904 (2009) P04003 [arXiv:0808.0227] [INSPIRE].

  58. [58]

    N. Kitanine et al., Form factor approach to the asymptotic behavior of correlation functions in critical models, J. Stat. Mech.1112 (2011) P12010 [arXiv:1110.0803] [INSPIRE].

  59. [59]

    N. Kitanine et al., Form factor approach to dynamical correlation functions in critical models, J. Stat. Mech.1209 (2012) P09001 [arXiv:1206.2630] [INSPIRE].

  60. [60]

    J.-S. Caux and J.-M. Maillet, Computation of dynamical correlation functions of Heisenberg chains in a field, Phys. Rev. Lett.95 (2005) 077201 [cond-mat/0502365] [INSPIRE].

  61. [61]

    R.G. Pereira et al., Dynamical spin structure factor for the anisotropic spin-1/2 Heisenberg chain, Phys. Rev. Lett.96 (2006) 257202 [cond-mat/0603681].

  62. [62]

    R.G. Pereira et al., Dynamical structure factor at small q for the XXZ spin-1/2 chain, J. Stat. Mech. Theory Exp.08 (2007) P08022 [arXiv:0706.4327].

  63. [63]

    J.S. Caux, P. Calabrese and N.A. Slavnov, One-particle dynamical correlations in the one-dimensional Bose gas, J. Stat. Mech. Theory Exp.01 (2007) P01008 [cond-mat/0611321].

  64. [64]

    A.G. Izergin, Partition function of the six-vertex model in a finite volume, Sov. Phys. Dokl.32 (1987) 878.

    ADS  MATH  Google Scholar 

  65. [65]

    S. Pakuliak, V. Rubtsov and A. Silantyev, SOS model partition function and the elliptic weight functions, J. Phys. A41 (2008) 295204 [arXiv:0802.0195].

    MathSciNet  Article  Google Scholar 

  66. [66]

    H. Rosengren, An Izergin-Korepin-type identity for the 8VSOS model, with applications to alternating sign matrices, Adv. Appl. Math.43 (2009) 137.

    MathSciNet  Article  Google Scholar 

  67. [67]

    S. Kharchev and A. Zabrodin, Theta vocabulary I, J. Geom. Phys.94 (2015) 19 [arXiv:1502.04603].

    ADS  MathSciNet  Article  Google Scholar 

  68. [68]

    G. Niccoli and V. Terras, The 8-vertex model with quasi-periodic boundary conditions, J. Phys. A49 (2016) 044001 [arXiv:1508.0323].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Zotov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2005.11224

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Slavnov, N., Zabrodin, A. & Zotov, A. Scalar products of Bethe vectors in the 8-vertex model. J. High Energ. Phys. 2020, 123 (2020). https://doi.org/10.1007/JHEP06(2020)123

Download citation

Keywords

  • Bethe Ansatz
  • Lattice Integrable Models