Second moment fuzzy-field-theory-like matrix models

Abstract

We solve a multitrace matrix model approximating the real quartic scalar field theory on the fuzzy sphere and obtain its phase diagram. We generalize this method to models with modified kinetic terms and demonstrate its use by investigating models related to the removal of the UV/IR mixing. We show that for the fuzzy sphere a modification of the kinetic part of the action by higher derivative term can change the phase diagram of the theory such that the triple point moves further from the origin.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    H.S. Snyder, Quantized space-time, Phys. Rev.71 (1947) 38 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    H. Grosse, C. Klimčík and P. Prešnajder, Towards finite quantum field theory in noncommutative geometry, Int. J. Theor. Phys.35 (1996) 231 [hep-th/9505175] [INSPIRE].

    Article  Google Scholar 

  3. [3]

    D. Karabali and V.P. Nair, Quantum Hall effect in higher dimensions, matrix models and fuzzy geometry, J. Phys.A 39 (2006) 12735.

    ADS  MathSciNet  MATH  Google Scholar 

  4. [4]

    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP09 (1999) 032 [hep-th/9908142] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    C. Sochichiu, Matrix models, Lect. Notes Phys.698 (2006) 189 [hep-th/0506186] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    H.C. Steinacker, On the quantum structure of space-time, gravity and higher spin in matrix models, Class. Quant. Grav.37 (2020) 113001 [arXiv:1911.03162] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    H. Steinacker, Non-commutative geometry and matrix models, PoS(QGQGS2011)004 [arXiv:1109.5521] [INSPIRE].

  8. [8]

    S. Doplicher, K. Fredenhagen and J.E. Roberts, The quantum structure of spacetime at the Planck scale and quantum fields, Comm. Math. Phys.172 (1995) 187.

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    S. Kováčik and D. O’Connor, Triple point of a scalar field theory on a fuzzy sphere, JHEP10 (2018) 010 [arXiv:1805.08111] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    F. Garcia Flores, X. Martin and D. O’Connor, Simulation of a scalar field on a fuzzy sphere, Int. J. Mod. Phys.A 24 (2009) 3917 [arXiv:0903.1986] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    B. Ydri, New algorithm and phase diagram of noncommutative 𝜙4on the fuzzy sphere, JHEP03 (2014) 065 [arXiv:1401.1529] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    F. Lizzi and B. Spisso, Noncommutative field theory: numerical analysis with the fuzzy disc, Int. J. Mod. Phys.A 27 (2012) 1250137 [arXiv:1207.4998] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    J. Medina, W. Bietenholz and D. O’Connor, Probing the fuzzy sphere regularisation in simulations of the 3d lambda 𝜙4model, JHEP04 (2008) 041 [arXiv:0712.3366] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    H. Mejía-Díaz, W. Bietenholz and M. Panero, The continuum phase diagram of the 2d non-commutative λ𝜙4model, JHEP10 (2014) 056 [arXiv:1403.3318] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    D. Prekrat, K.N. Todorović-Vasović and D. Ranković, Detecting scaling in phase transitions on the truncated Heisenberg algebra, arXiv:2002.05704 [INSPIRE].

  16. [16]

    M. Panero, The numerical approach to quantum field theory in a non-commutative space, PoS(CORFU2015)099 [arXiv:1601.01176] [INSPIRE].

  17. [17]

    S.S. Gubser and S.L. Sondhi, Phase structure of noncommutative scalar field theories, Nucl. Phys.B 605 (2001) 395 [hep-th/0006119] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    K. Hatakeyama, A. Tsuchiya and K. Yamashiro, Renormalization on the fuzzy sphere, PTEP2018 (2018) 063B05 [arXiv:1805.03975] [INSPIRE].

  19. [19]

    K. Hatakeyama, A. Tsuchiya and K. Yamashiro, Renormalization on the fuzzy sphere, PoS(LATTICE2018)045 [arXiv:1811.10806] [INSPIRE].

  20. [20]

    J.L. Karczmarek and P. Sabella-Garnier, Entanglement entropy on the fuzzy sphere, JHEP03 (2014) 129 [arXiv:1310.8345] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    S. Okuno, M. Suzuki and A. Tsuchiya, Entanglement entropy in scalar field theory on the fuzzy sphere, PTEP2016 (2016) 023B03 [arXiv:1512.06484] [INSPIRE].

  22. [22]

    H.Z. Chen and J.L. Karczmarek, Entanglement entropy on a fuzzy sphere with a UV cutoff, JHEP08 (2018) 154 [arXiv:1712.09464] [INSPIRE].

    ADS  MATH  Google Scholar 

  23. [23]

    D. O’Connor and C. Sämann, Fuzzy scalar field theory as a multitrace matrix model, JHEP08 (2007) 066 [arXiv:0706.2493] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    C. Sämann, The multitrace matrix model of scalar field theory on fuzzy CPn , SIGMA6 (2010) 050 [arXiv:1003.4683] [INSPIRE].

    MATH  Google Scholar 

  25. [25]

    C. Sämann, Bootstrapping fuzzy scalar field theory, JHEP04 (2015) 044 [arXiv:1412.6255] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    M. Ihl, C. Sachse and C. Sämann, Fuzzy scalar field theory as matrix quantum mechanics, JHEP03 (2011) 091 [arXiv:1012.3568] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    S. Rea and C. Sämann, The phase diagram of scalar field theory on the fuzzy disc, JHEP11 (2015) 115 [arXiv:1507.05978] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    A.P. Polychronakos, Effective action and phase transitions of scalar field on the fuzzy sphere, Phys. Rev.D 88 (2013) 065010 [arXiv:1306.6645] [INSPIRE].

    ADS  Google Scholar 

  29. [29]

    H. Steinacker, A non-perturbative approach to non-commutative scalar field theory, JHEP03 (2005) 075 [hep-th/0501174] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    V.P. Nair, A.P. Polychronakos and J. Tekel, Fuzzy spaces and new random matrix ensembles, Phys. Rev.D 85 (2012) 045021 [arXiv:1109.3349].

    ADS  Google Scholar 

  31. [31]

    J. Tekel, Asymmetric hermitian matrix models and fuzzy field theory, Phys. Rev.D 97 (2018) 125018 [arXiv:1711.02008] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  32. [32]

    A.P. Balachandran, S. Kurkcuoglu and S. Vaidya, Lectures on fuzzy and fuzzy SUSY physics, hep-th/0511114 [INSPIRE].

  33. [33]

    B. Ydri, Lectures on matrix field theory, Lect. Notes Phys.929 (2017) pp.1 [arXiv:1603.00924] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  34. [34]

    B. Eynard, T. Kimura and S. Ribault, Random matrices, arXiv:1510.04430 [INSPIRE].

  35. [35]

    J. Tekel, Phase strucutre of fuzzy field theories and multitrace matrix models, Acta Phys. Slov.65 (2015) 369 [arXiv:1512.00689] [INSPIRE].

    Google Scholar 

  36. [36]

    M. Šubjaková, J. Tekel, Fuzzy field theories and related matrix models, to appear in PoS(CORFU2019).

  37. [37]

    D. Anninos and B. Mühlmann, Notes on Matrix Models, arXiv:2004.01171 [INSPIRE].

  38. [38]

    H. Grosse, A. Hock and R. Wulkenhaar, Solution of all quartic matrix models, arXiv:1906.04600 [INSPIRE].

  39. [39]

    Y. Shimamune, On the phase structure of large N matrix models and gauge models, Phys. Lett.108B (1982) 407 [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    J. Madore, The fuzzy sphere, Class. Quant. Grav.9 (1992) 69 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. [41]

    S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynamics, JHEP02 (2000) 020 [hep-th/9912072] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  42. [42]

    C.S. Chu, J. Madore and H. Steinacker, Scaling limits of the fuzzy sphere at one loop, JHEP03 (2005) 075.

    Google Scholar 

  43. [43]

    B.P. Dolan, D. O’Connor and P. Prešnajder, Matrix 𝜙4models on the fuzzy sphere and their continuum limits, JHEP03 (2002) 013 [hep-th/0109084] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juraj Tekel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2002.02317

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Šubjaková, M., Tekel, J. Second moment fuzzy-field-theory-like matrix models. J. High Energ. Phys. 2020, 88 (2020). https://doi.org/10.1007/JHEP06(2020)088

Download citation

Keywords

  • Matrix Models
  • Non-Commutative Geometry