Discrete symmetries, weak coupling conjecture and scale separation in AdS vacua

Abstract

We argue that in theories of quantum gravity with discrete gauge symmetries, e.g. Zk , the gauge couplings of U(1) gauge symmetries become weak in the limit of large k, as g → k−α with α a positive order 1 coefficient. The conjecture is based on black hole arguments combined with the Weak Gravity Conjecture (or the BPS bound in the supersymmetric setup), and the species bound. We provide explicit examples based on type IIB on AdS5×S5/Zk orbifolds, and M-theory on AdS4×S7/Zk ABJM orbifolds (and their type IIA reductions). We study AdS4 vacua of type IIA on CY orientifold compactifications, and show that the parametric scale separation in certain infinite families is controlled by a discrete Zk symmetry for domain walls. We accordingly propose a refined version of the strong AdS Distance Conjecture, including a parametric dependence on the order of the discrete symmetry for 3-forms.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    C. Vafa, The string landscape and the swampland, hep-th/0509212 [INSPIRE].

  2. [2]

    H. Ooguri and C. Vafa, On the geometry of the string landscape and the swampland, Nucl. Phys.B 766 (2007) 21 [hep-th/0605264] [INSPIRE].

  3. [3]

    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP06 (2007) 060 [hep-th/0601001] [INSPIRE].

  4. [4]

    H. Ooguri and C. Vafa, Non-supersymmetric AdS and the swampland, Adv. Theor. Math. Phys.21 (2017) 1787 [arXiv:1610.01533] [INSPIRE].

  5. [5]

    G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, De Sitter space and the swampland, arXiv:1806.08362 [INSPIRE].

  6. [6]

    G. Buratti, E. García-Valdecasas and A.M. Uranga, Supersymmetry breaking warped throats and the weak gravity conjecture, JHEP04 (2019) 111 [arXiv:1810.07673] [INSPIRE].

  7. [7]

    T.D. Brennan, F. Carta and C. Vafa, The string landscape, the swampland and the missing corner, PoS(TASI2017)015 [arXiv:1711.00864] [INSPIRE].

  8. [8]

    E. Palti, The swampland: introduction and review, Fortsch. Phys.67 (2019) 1900037 [arXiv:1903.06239] [INSPIRE].

  9. [9]

    T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev.D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

  10. [10]

    D. Harlow and H. Ooguri, Constraints on symmetries from holography, Phys. Rev. Lett.122 (2019) 191601 [arXiv:1810.05337] [INSPIRE].

  11. [11]

    D. Harlow and H. Ooguri, Symmetries in quantum field theory and quantum gravity, arXiv:1810.05338 [INSPIRE].

  12. [12]

    N. Craig, I. Garcia Garcia and S. Koren, Discrete gauge symmetries and the weak gravity conjecture, JHEP05 (2019) 140 [arXiv:1812.08181] [INSPIRE].

  13. [13]

    L.M. Krauss and F. Wilczek, Discrete gauge symmetry in continuum theories, Phys. Rev. Lett.62 (1989) 1221 [INSPIRE].

  14. [14]

    M.G. Alford and F. Wilczek, Aharonov-Bohm interaction of cosmic strings with matter, Phys. Rev. Lett.62 (1989) 1071 [INSPIRE].

  15. [15]

    M.G. Alford, J. March-Russell and F. Wilczek, Discrete quantum hair on black holes and the nonabelian Aharonov-Bohm effect, Nucl. Phys.B 337 (1990) 695 [INSPIRE].

  16. [16]

    M.G. Alford et al., The interactions and excitations of non-Abelian vortices, Phys. Rev. Lett.64 (1990) 1632 [Erratum ibid.65 (1990) 668] [INSPIRE].

  17. [17]

    M.G. Alford and J. March-Russell, Discrete gauge theories, Int. J. Mod. Phys.B 5 (1991) 2641 [INSPIRE].

  18. [18]

    M.G. Alford, K.-M. Lee, J. March-Russell and J. Preskill, Quantum field theory of non-Abelian strings and vortices, Nucl. Phys.B 384 (1992) 251 [hep-th/9112038] [INSPIRE].

  19. [19]

    M.G. Alford, S.R. Coleman and J. March-Russell, Disentangling non-Abelian discrete quantum hair, Nucl. Phys.B 351 (1991) 735 [INSPIRE].

  20. [20]

    M. Berasaluce-Gonzalez, L.E. Ibáñez, P. Soler and A.M. Uranga, Discrete gauge symmetries in D-brane models, JHEP12 (2011) 113 [arXiv:1106.4169] [INSPIRE].

  21. [21]

    M. Berasaluce-Gonzalez, P.G. Camara, F. Marchesano and A.M. Uranga, Zp charged branes in flux compactifications, JHEP04 (2013) 138 [arXiv:1211.5317] [INSPIRE].

  22. [22]

    M. Berasaluce-Gonzalez et al., Non-Abelian discrete gauge symmetries in 4d string models, JHEP09 (2012) 059 [arXiv:1206.2383] [INSPIRE].

  23. [23]

    L.E. Ibáñez, A.N. Schellekens and A.M. Uranga, Discrete gauge symmetries in discrete MSSM-like orientifolds, Nucl. Phys.B 865 (2012) 509 [arXiv:1205.5364] [INSPIRE].

  24. [24]

    F. Marchesano, G. Shiu and A.M. Uranga, F-term axion monodromy inflation, JHEP09 (2014) 184 [arXiv:1404.3040] [INSPIRE].

  25. [25]

    M. Montero, A.M. Uranga and I. Valenzuela, Transplanckian axions!?, JHEP08 (2015) 032 [arXiv:1503.03886] [INSPIRE].

  26. [26]

    G. Buratti, J. Calderón and A.M. Uranga, Transplanckian axion monodromy!?, JHEP05 (2019) 176 [arXiv:1812.05016] [INSPIRE].

  27. [27]

    S.R. Coleman, J. Preskill and F. Wilczek, Quantum hair on black holes, Nucl. Phys.B 378 (1992) 175 [hep-th/9201059] [INSPIRE].

  28. [28]

    I. Garcia Garcia, Properties of discrete black hole hair, JHEP02 (2019) 117 [arXiv:1809.03527] [INSPIRE].

  29. [29]

    S. Gukov, M. Rangamani and E. Witten, Dibaryons, strings and branes in AdS orbifold models, JHEP12 (1998) 025 [hep-th/9811048] [INSPIRE].

  30. [30]

    B.A. Burrington, J.T. Liu and L.A. Pando Zayas, Finite Heisenberg groups in quiver gauge theories, Nucl. Phys.B 747 (2006) 436 [hep-th/0602094] [INSPIRE].

  31. [31]

    E. Garćıa-Valdecasas, A. Mininno and A.M. Uranga, Discrete symmetries in dimer diagrams, JHEP10 (2019) 091 [arXiv:1907.06938] [INSPIRE].

  32. [32]

    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP10 (2008) 091 [arXiv:0806.1218] [INSPIRE].

  33. [33]

    O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Type IIA moduli stabilization, JHEP07 (2005) 066 [hep-th/0505160] [INSPIRE].

  34. [34]

    D. Lüst, E. Palti and C. Vafa, AdS and the swampland, Phys. Lett.B 797 (2019) 134867 [arXiv:1906.05225] [INSPIRE].

  35. [35]

    G. Dvali, Three-form gauging of axion symmetries and gravity, hep-th/0507215 [INSPIRE].

  36. [36]

    N. Kaloper and L. Sorbo, A natural framework for chaotic inflation, Phys. Rev. Lett.102 (2009) 121301 [arXiv:0811.1989] [INSPIRE].

  37. [37]

    D. Junghans, O-plane backreaction and scale separation in Type IIA flux vacua, arXiv:2003.06274 [INSPIRE].

  38. [38]

    F. Marchesano, E. Palti, J. Quirant and A. Tomasiello, On supersymmetric AdS4orientifold vacua, arXiv:2003.13578 [INSPIRE].

  39. [39]

    B. Heidenreich, M. Reece and T. Rudelius, Sharpening the weak gravity conjecture with dimensional reduction, JHEP02 (2016) 140 [arXiv:1509.06374] [INSPIRE].

  40. [40]

    B. Heidenreich, M. Reece and T. Rudelius, Evidence for a sublattice weak gravity conjecture, JHEP08 (2017) 025 [arXiv:1606.08437] [INSPIRE].

  41. [41]

    G. Dvali, Black holes and large N species solution to the hierarchy problem, Fortsch. Phys.58 (2010) 528 [arXiv:0706.2050] [INSPIRE].

  42. [42]

    C. Cheung and G.N. Remmen, Naturalness and the weak gravity conjecture, Phys. Rev. Lett.113 (2014) 051601 [arXiv:1402.2287] [INSPIRE].

  43. [43]

    G. Aldazabal et al., Intersecting brane worlds, JHEP02 (2001) 047 [hep-ph/0011132] [INSPIRE].

  44. [44]

    G. Aldazabal et al., D = 4 chiral string compactifications from intersecting branes, J. Math. Phys.42 (2001) 3103 [hep-th/0011073] [INSPIRE].

  45. [45]

    B.A. Burrington, J.T. Liu and L.A. Pando Zayas, Central extensions of finite Heisenberg groups in cascading quiver gauge theories, Nucl. Phys.B 749 (2006) 245 [hep-th/0603114] [INSPIRE].

  46. [46]

    B.A. Burrington, J.T. Liu, M. Mahato and L.A. Pando Zayas, Finite Heisenbeg groups and Seiberg dualities in quiver gauge theories, Nucl. Phys.B 757 (2006) 1 [hep-th/0604092] [INSPIRE].

  47. [47]

    B.A. Burrington, J.T. Liu and L.A. Pando Zayas, Finite Heisenberg groups from non-Abelian orbifold quiver gauge theories, Nucl. Phys.B 794 (2008) 324 [hep-th/0701028] [INSPIRE].

  48. [48]

    J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from Anti-de Sitter space, JHEP06 (2000) 008 [hep-th/0003075] [INSPIRE].

  49. [49]

    P.G. Camara, L.E. Ibáñez and F. Marchesano, RR photons, JHEP09 (2011) 110 [arXiv:1106.0060] [INSPIRE].

  50. [50]

    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].

  51. [51]

    O. Aharony et al., Large N field theories, string theory and gravity, Phys. Rept.323 (2000) 183 [hep-th/9905111] [INSPIRE].

  52. [52]

    M. Montero, A.M. Uranga and I. Valenzuela, A Chern-Simons pandemic, JHEP07 (2017) 123 [arXiv:1702.06147] [INSPIRE].

  53. [53]

    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev.D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

  54. [54]

    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP03 (2005) 007 [hep-th/0502058] [INSPIRE].

  55. [55]

    P.G. Camara, A. Font and L.E. Ibáñez, Fluxes, moduli fixing and MSSM-like vacua in a simple IIA orientifold, JHEP09 (2005) 013 [hep-th/0506066] [INSPIRE].

  56. [56]

    F. Marchesano and J. Quirant, A landscape of AdS flux vacua, JHEP12 (2019) 110 [arXiv:1908.11386] [INSPIRE].

  57. [57]

    A. Herraez, L.E. Ibáñez, F. Marchesano and G. Zoccarato, The Type IIA flux potential, 4-forms and Freed-Witten anomalies, JHEP09 (2018) 018 [arXiv:1802.05771] [INSPIRE].

  58. [58]

    D. Escobar, F. Marchesano and W. Staessens, Type IIA Flux Vacua with mobile D6-branes, JHEP01 (2019) 096 [arXiv:1811.09282] [INSPIRE].

  59. [59]

    A. Font, A. Herráez and L.E. Ibáñez, On scale separation in Type II AdS flux vacua, JHEP03 (2020) 013 [arXiv:1912.03317] [INSPIRE].

  60. [60]

    G. Aldazabal and A. Font, A second look at N = 1 supersymmetric AdS4vacua of type IIA supergravity, JHEP02 (2008) 086 [arXiv:0712.1021] [INSPIRE].

  61. [61]

    T.W. Grimm, C. Li and I. Valenzuela, Asymptotic flux compactifications and the swampland, JHEP06 (2020) 009 [arXiv:1910.09549] [INSPIRE].

  62. [62]

    J. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev.82 (1951) 664.

  63. [63]

    W.A. Hiscock and L.D. Weems, Evolution of charged evaporating black holes, Phys. Rev.D 41 (1990) 1142.

  64. [64]

    G.W. Gibbons, Vacuum polarization and the spontaneous loss of charge by black holes, Cmmoun. Math. Phys.44 (1975) 245.

  65. [65]

    M. Montero, T. Van Riet and G. Venken, Festina lente: EFT constraints from charged black hole evaporation in de Sitter, JHEP01 (2020) 039 [arXiv:1910.01648] [INSPIRE].

  66. [66]

    L.E. Ibáñez and A.M. Uranga, String theory and particle physics: an introduction to string phenomenology, Cambridge University Press, Cambridge U.K. (2012).

  67. [67]

    A.M. Uranga, D-brane probes, RR tadpole cancellation and k-theory charge, Nucl. Phys.B 598 (2001) 225 [hep-th/0011048] [INSPIRE].

  68. [68]

    R. Blumenhagen, M. Cvetič and T. Weigand, Spacetime instanton corrections in 4D string vacua: the seesaw mechanism for D-brane models, Nucl. Phys.B 771 (2007) 113 [hep-th/0609191] [INSPIRE].

  69. [69]

    L.E. Ibáñez, A.N. Schellekens and A.M. Uranga, Instanton induced neutrino Majorana Masses in CFT orientifolds with MSSM-like spectra, JHEP06 (2007) 011 [arXiv:0704.1079] [INSPIRE].

  70. [70]

    B. Florea, S. Kachru, J. McGreevy and N. Saulina, Stringy instantons and quiver gauge theories, JHEP05 (2007) 024 [hep-th/0610003] [INSPIRE].

  71. [71]

    A. Font, A. Herráez and L.E. Ibáñez, The swampland distance conjecture and towers of tensionless branes, JHEP08 (2019) 044 [arXiv:1904.05379] [INSPIRE].

  72. [72]

    H. Hatanaka, M. Sakamoto, M. Tachibana and K. Takenaga, Many brane extension of the Randall-Sundrum solution, Prog. Theor. Phys.102 (1999) 1213 [hep-th/9909076] [INSPIRE].

  73. [73]

    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett.83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

  74. [74]

    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett.83 (1999) 4690 [hep-th/9906064] [INSPIRE].

  75. [75]

    J. Polchinski and E. Witten, Evidence for heterotic-Type I string duality, Nucl. Phys.B 460 (1996) 525 [hep-th/9510169] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alessandro Mininno.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2003.09740

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Buratti, G., Calderón, J., Mininno, A. et al. Discrete symmetries, weak coupling conjecture and scale separation in AdS vacua. J. High Energ. Phys. 2020, 83 (2020). https://doi.org/10.1007/JHEP06(2020)083

Download citation

Keywords

  • Discrete Symmetries
  • Flux compactifications
  • Superstring Vacua
  • Supersymmetric Effective Theories